10,321 research outputs found
Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland
Indexación: Web of Science; Scopus.Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m(-2)) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ, but both functional groups (Nitrosomona and Nitrospira) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic variation affects potential ecosystem functioning.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01823/ful
Enhanced Parallel Generation of Tree Structures for the Recognition of 3D Images
Segmentations of a digital object based on a connectivity
criterion at n-xel or sub-n-xel level are useful tools in image topological
analysis and recognition. Working with cell complex analogous of digital
objects, an example of this kind of segmentation is that obtained from
the combinatorial representation so called Homological Spanning Forest
(HSF, for short) which, informally, classifies the cells of the complex as
belonging to regions containing the maximal number of cells sharing the
same homological (algebraic homology with coefficient in a field) information.
We design here a parallel method for computing a HSF (using
homology with coefficients in Z/2Z) of a 3D digital object. If this object
is included in a 3D image of m1 × m2 × m3 voxels, its theoretical time
complexity order is near O(log(m1 + m2 + m3)), under the assumption
that a processing element is available for each voxel. A prototype implementation
validating our results has been written and several synthetic,
random and medical tridimensional images have been used for testing.
The experiments allow us to assert that the number of iterations in which
the homological information is found varies only to a small extent from
the theoretical computational time.Ministerio de Economía y Competitividad MTM2016-81030-
Hypocrea lixii y Trichoderma asperellum como agentes bioreguladores de Alternaria solani y Corynespora cassiicola en condiciones de laboratorio e invernadero
El cultivo de tomate (Lycopersicon esculentum Mill) en Ecuador de acuerdo a datos estadísticos del MAGAP/SIGAGRO reportan que la superficie sembrada en 2010 fue 2037 ha con producción de 43.025 Tm. Este cultivo es afectado por varios fitopatógenos de suelo y foliares que provocan pérdidas en el rendimiento, aumento en los costos de producción por efectos de control, estudios precedentes reportan que en la provincia de Manabí los productores invierten alrededor del 50% del costo de inversión en labores de combate de plagas, con promedios de 23 aplicaciones durante el ciclo de producción.
Por otra parte, se ha observado que utilizan con productos extremadamente y altamente tóxicos hasta 24 horas antes de cosechar y en ciertos casos inclusive durante la misma, esto trae como consecuencia daños en la salud de personas que laboran en campo y de los consumidores, al agroecosistema; por lo que es necesario buscar alternativas amigables con la naturaleza entre ellos hongos antagonistas que reducen en forma natural el inóculo de fitopatógenos.
Las enfermedades más importantes en las provincias de Guayas y Santa Elena es el tizón temprano o lancha temprana y la mancha corinespora. El tizón temprano causado por Alternaria solani es una enfermedad muy destructiva en áreas donde la humedad es alta; afecta al follaje, tallos y frutos, puede causar daños severos al cultivo en cualquier etapa del desarrollo. Los síntomas iniciales son pequeñas lesiones de color negro parduzco que aparece en hojas más viejas, el tejido que rodea la lesión toma un color amarillo; los puntos necróticos aumentan rápidamente de tamaño y cuando su diámetro es de 6 mm o más pueden distinguirse anillos concéntricos en la zona de color castaño claro. Las lesiones en el tallo de las plántulas son pequeños, oscuros y ligeramente hundidos, pero pueden aumentar de tamaño para formar lesiones circulares o alargadas con anillos concéntricos pronunciados quedando el centro de coloración más clara. La infección ocurre en la intersección al cáliz o al tallo. Tanto en estado verde o maduro; a menudo el fruto se cae y puede causar del 30-50% de frutos inmaduros
Observation of surface solitons in chirped waveguide arrays
We report the observation of surface solitons in chirped semi-infinite
waveguide arrays whose waveguides exhibit exponentially decreasing refractive
indices. We show that the power threshold for surface wave formation decreases
with an increase of the array chirp and that for sufficiently large chirp
values linear surface modes are supported.Comment: 12 pages, 3 figures, to appear in Optics Letter
Stationary Localized States Due to a Nonlinear Dimeric Impurity Embedded in a Perfect 1-D Chain
The formation of Stationary Localized states due to a nonlinear dimeric
impurity embedded in a perfect 1-d chain is studied here using the appropriate
Discrete Nonlinear Schrdinger Equation. Furthermore, the nonlinearity
has the form, where is the complex amplitude. A proper
ansatz for the Localized state is introduced in the appropriate Hamiltonian of
the system to obtain the reduced effective Hamiltonian. The Hamiltonian
contains a parameter, which is the ratio of stationary
amplitudes at impurity sites. Relevant equations for Localized states are
obtained from the fixed point of the reduced dynamical system. = 1 is
always a permissible solution. We also find solutions for which . Complete phase diagram in the plane comprising of both
cases is discussed. Several critical lines separating various regions are
found. Maximum number of Localized states is found to be six. Furthermore, the
phase diagram continuously extrapolates from one region to the other. The
importance of our results in relation to solitonic solutions in a fully
nonlinear system is discussed.Comment: Seven figures are available on reques
A Study of The Formation of Stationary Localized States Due to Nonlinear Impurities Using The Discrete Nonlinear Schr\"odinger Equation
The Discrete Nonlinear Schrdinger Equation is used to study the
formation of stationary localized states due to a single nonlinear impurity in
a Caley tree and a dimeric nonlinear impurity in the one dimensional system.
The rotational nonlinear impurity and the impurity of the form where is arbitrary and is the nonlinearity
parameter are considered. Furthermore, represents the absolute
value of the amplitude. Altogether four cases are studies. The usual Greens
function approach and the ansatz approach are coherently blended to obtain
phase diagrams showing regions of different number of states in the parameter
space. Equations of critical lines separating various regions in phase diagrams
are derived analytically. For the dimeric problem with the impurity , three values of , namely, , at and and
for are obtained. Last two values are lower than the
existing values. Energy of the states as a function of parameters is also
obtained. A model derivation for the impurities is presented. The implication
of our results in relation to disordered systems comprising of nonlinear
impurities and perfect sites is discussed.Comment: 10 figures available on reques
Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis
International audienceAerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ?2.5 ?m (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE), Proton-Elastic Scattering Analysis (PESA) and Scanning Transmission Ion Microscopy (STIM) measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material
Multiwavelength observations of the blazar BL Lacertae: a new fast TeV γ-ray flare
Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan (South Korea). Published in Proceeding of Science.Observations of fast TeV γ-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV γ-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at >200 GeV measured with the 4-minute binned light curve is (4.2±0.6)×10−6photonsm−2s−1, or ∼180% the Crab Nebula flux. Variability in GeV γ-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV γ-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks
Nonlinear Tamm states in periodic photonic structures
Abstract not availabl
- …