27,308 research outputs found

    On maxitive integration

    Get PDF
    A functional is said to be maxitive if it commutes with the (pointwise) supremum operation. Such functionals find application in particular in decision theory and related fields. In the present paper, maxitive functionals are characterized as integrals with respect to maxitive measures (also known as possibility measures or idempotent measures). These maxitive integrals are then compared with the usual additive and nonadditive integrals on the basis of some important properties, such as convexity, subadditivity, and the law of iterated expectations

    Likelihood decision functions

    Get PDF
    In both classical and Bayesian approaches, statistical inference is unified and generalized by the corresponding decision theory. This is not the case for the likelihood approach to statistical inference, in spite of the manifest success of the likelihood methods in statistics. The goal of the present work is to fill this gap, by extending the likelihood approach in order to cover decision making as well. The resulting decision functions, called likelihood decision functions, generalize the usual likelihood methods (such as ML estimators and LR tests), in the sense that these methods appear as the likelihood decision functions in particular decision problems. In general, the likelihood decision functions maintain some key properties of the usual likelihood methods, such as equivariance and asymptotic optimality. By unifying and generalizing the likelihood approach to statistical inference, the present work offers a new perspective on statistical methodology and on the connections among likelihood methods

    The Quest for Bandwidth Estimation Techniques for large-scale Distributed Systems

    Get PDF
    In recent years the research community has developed many techniques to estimate the end-to-end available bandwidth of an Internet path. This important metric has been proposed for use in several distributed systems and, more recently, has even been considered to improve the congestion control mechanism of TCP. Thus, it has been suggested that some existing estimation techniques could be used for this purpose. However, existing tools were not designed for large-scale deployments and were mostly validated in controlled settings, considering only one measurement running at a time. In this paper, we argue that current tools, while offering good estimates when used alone, might not work in large-scale systems where several estimations severely interfere with each other. We analyze the properties of the measurement paradigms employed today and discuss their functioning, study their overhead and analyze their interference. Our testbed results show that current techniques are insufficient as they are. Finally, we will discuss and propose some principles that should be taken into account for including available bandwidth measurements in large-scale distributed systems. 1

    Robust regression with imprecise data

    Get PDF
    We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricted to linear regression. Its result consists of a set of functions, reflecting the entire uncertainty of the regression problem. Here we study in particular a robust special case of the likelihood-based imprecise regression, which can be interpreted as a generalization of the method of least median of squares. Moreover, we apply it to data from a social survey, and compare it with other approaches to regression with imprecise data. It turns out that the likelihood-based approach is the most generally applicable one and is the only approach accounting for multiple sources of uncertainty at the same time

    On Integrability of spinning particle motion in higher-dimensional black hole spacetimes

    Full text link
    We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing--Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et. al. [hep-th/0611083] on complete integrability of geodesic motion in these spacetimes.Comment: Version 2: revised version, added references. 5 pages, no figure

    Likelihood-based Imprecise Regression

    Get PDF
    We introduce a new approach to regression with imprecisely observed data, combining likelihood inference with ideas from imprecise probability theory, and thereby taking different kinds of uncertainty into account. The approach is very general and applicable to various kinds of imprecise data, not only to intervals. In the present paper, we propose a regression method based on this approach, where no parametric distributional assumption is needed and interval estimates of quantiles of the error distribution are used to identify plausible descriptions of the relationship of interest. Therefore, the proposed regression method is very robust. We apply our robust regression method to an interesting question in the social sciences. The analysis, based on survey data, yields a relatively imprecise result, reflecting the high amount of uncertainty inherent in the analyzed data set

    Impact of the global crisis on the achievement of the MDGs in Latin America

    Get PDF
    Progress towards the MDGs is expected to slow as a consequence of the global economic downturn. This study applies an economy-wide framework to analyze the impact of the crisis on MDG achievement in six Latin American countries. It finds significant setbacks towards the goals and, in the case of the region’s low-income countries, the cost of achieving these would rise between 1.6 and 3.4 per cent of GDP per year between 2010 and 2015 as compared with a no-crisis scenario. The additional public spending would contribute to economic growth though not sufficiently for full recovery to pre-crisis growth.computable general equilibrium models, distribution, welfare and poverty, foreign aid, macroeconomic analyses of economic development
    corecore