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Abstract

This paper considers the problem of simple linear regression with interval-censored data. That is, n pairs of intervals
are observed instead of the n pairs of precise values for the two variables (dependent and independent). Each of these
intervals is closed but possibly unbounded, and contains the corresponding (unobserved) value of the dependent or
independent variable. The goal of the regression is to describe the relationship between (the precise values of) these
two variables by means of a linear function.

Likelihood-based Imprecise Regression (LIR) is a recently introduced, very general approach to regression for
imprecisely observed quantities. The result of a LIR analysis is in general set-valued: it consists of all regression
functions that cannot be excluded on the basis of likelihood inference. These regression functions are said to be
undominated.

Since the interval data can be unbounded, a robust regression method is necessary. Hence, we consider the robust
LIR method based on the minimization of the residuals’ quantiles. For this method, we prove that the set of all the
intercept-slope pairs corresponding to the undominated regression functions is the union of finitely many polygons.
We give an exact algorithm for determining this set (i.e., for determining the set-valued result of the robust LIR
analysis), and show that it has worst-case time complexity O(n3 log n). We have implemented this exact algorithm as
part of the R package linLIR.

Keywords: simple linear regression, interval data, likelihood inference, robust regression, exact algorithm, R
package

1. Introduction

Likelihood-based Imprecise Regression (LIR) is a recently introduced approach to regression for imprecisely
observed quantities (see Cattaneo and Wiencierz, 2012, 2011). In this approach, it is assumed that the available data
are coarse in the sense of Heitjan and Rubin (1991). That is, precise values of the quantities of interest exist, but we
cannot observe them directly. Instead, we have only imprecise observations: these are subsets of the sample space,
which we know to contain the precise values of the quantities of interest.

At the two extremes of the range of possible imprecise observations are the precise observations and the missing
data, respectively. We have a precise observation when the imprecise observation contains a single value, which we
then know to be the precise value of the quantity of interest (which in this case is thus indirectly observed). At the
other extreme we have the missing data, which occur when the imprecise observation is the whole sample space, since
in this case we learn nothing about the precise value of the quantity of interest.

Between these two extremes lies the whole range of possible imprecise observations, which can be any subset of
the sample space. In particular, it can be argued that continuous quantities are always imprecisely observed, since
no measuring device can be infinitely precise. Therefore, regression for imprecisely observed quantities is certainly
an important topic in statistics. In fact, various regression methods have been proposed in several special cases (see
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for example Beaton et al., 1976; Buckley and James, 1979; Dempster and Rubin, 1983; Li and Zhang, 1998; Pötter,
2000; Manski and Tamer, 2002; Marino and Palumbo, 2002; Gioia and Lauro, 2005; Ferson et al., 2007; Chen and
Van Keilegom, 2009; Utkin and Coolen, 2011). In contrast to most of these proposals, LIR approaches the problem
of regression with imprecisely observed quantities from a very general perspective.

The imprecise observations induce a likelihood function on the joint probability distributions of the random vari-
ables and random sets representing the precise values and imprecise observations, respectively. The result of a LIR
analysis consists of all regression functions that cannot be excluded on the basis of likelihood inference. Hence, the
result of a LIR analysis is in general set-valued (set-valued results are obtained for instance also by Manski and Tamer,
2002; Marino and Palumbo, 2002; Gioia and Lauro, 2005; Vansteelandt et al., 2006; Ferson et al., 2007). The extent
of the set-valued result of a LIR analysis reflects the whole uncertainty in the regression problem with imprecisely
observed quantities. That is, it encompasses the statistical uncertainty due to the finite sample as well as the indeter-
mination related to the fact that the quantities are only imprecisely observed (these two kinds of uncertainty in the
set-valued results are discerned for example also by Manski and Tamer, 2002; Vansteelandt et al., 2006).

In the present paper we consider a robust LIR method, in which quantiles of the residuals are used to compare the
possible regression functions (see Cattaneo and Wiencierz, 2012, 2011). This method is closely related to the least
median (or more generally, quantile) of squares regression, which is a very robust regression method for precisely
observed quantities (see for example Rousseeuw, 1984; Hampel, 1975; Hampel et al., 1986; Rousseeuw and Leroy,
1987; Maronna et al., 2006; Huber and Ronchetti, 2009). Besides being a virtue by itself, the robustness of the
regression method is almost necessary when dealing with possibly unbounded imprecise observations, because an
unbounded imprecise observation means that the precise value can be arbitrarily far away. In practical applications,
an unbounded imprecise observation can usually be replaced by a bounded (but very wide) one: the advantage of
robust methods is that they do not depend (much) on the choice of the replacing imprecise observation.

In this paper we focus on the case of simple linear regression with interval data. That is, there are two variables
of interest, which are real-valued and interval-censored (i.e., the imprecise observations are possibly unbounded in-
tervals). For this situation, we develop the first exact algorithm to determine the set-valued result of the robust LIR
method. The first part of this algorithm is related to the first exact algorithm for least median of squares regression,
proposed by Steele and Steiger (1986) (see also Rousseeuw and Leroy, 1987, Chapter 5), which was also the basis of
many other developments (see for example Souvaine and Steele, 1987; Edelsbrunner and Souvaine, 1990; Stromberg,
1993; Hawkins, 1993; Carrizosa and Plastria, 1995; Watson, 1998; Bernholt, 2005; Mount et al., 2007).

The paper is organized as follows. In the next section, we briefly present the robust LIR method in the framework
of simple linear regression with interval data. Section 3 contains the main results of the paper, expressed as two
theorems, whose proofs are in the appendix. These results give us an exact algorithm for the robust LIR method. The
computational complexity of the algorithm is then studied in Subsection 3.3. We have implemented the algorithm as
part of an R package, which is briefly introduced in Subsection 3.4, and applied to an illustrative example in Section 4.
The final section is devoted to conclusions and directions for further research.

2. LIR in the case of simple linear regression with interval data

In the case of simple linear regression, the relation between two real-valued variables, X and Y , shall be described
by means of a linear function. Hence, the set of all possible regression functions is F := { fa,b : a, b ∈ R}, where the
functions fa,b : R→ R are defined by fa,b(x) = a+b x for all x ∈ R. We consider here the case of imprecisely observed
quantities, and in particular of interval data. That is, instead of directly observing the realizations of the variables X
and Y , we can only observe the realizations of the extended real-valued variables X, X, Y , and Y , which are the
endpoints of the interval data [X, X] and [Y ,Y]. Throughout the paper, [w,w] denotes the closed interval consisting of
all real numbers w such that w ≤ w ≤ w. This notation is used for all w,w ∈ R, so that the interval [w,w] is empty
when w > w, and does not contain its endpoints when these are infinite.

2.1. The probability model

The only assumption about the joint distribution of the six random variables X, Y , X, X, Y , and Y is the following:

P(X ≤ X ≤ X and Y ≤ Y ≤ Y) ≥ 1 − ε, (1)
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for some ε ∈ [0, 1/2[. That is, apart for the choice of ε, the probability model is fully nonparametric: it is only assumed
that the (possibly unbounded) rectangle [X, X]× [Y ,Y] contains the pair (X,Y) with probability at least 1− ε. In other
words, an imprecise observation may not cover the precise data point with probability at most ε. The usual choice
of ε is 0 (see for instance Heitjan and Rubin, 1991), but sometimes it can be useful to allow the imprecise data to
be incorrect with a positive probability, and ε ∈ ]0, 1/2[ is then an upper bound on this probability. Apart from this
assumption, there is no restriction on the set of possible distributions of the precise and imprecise data. In particular,
nothing is assumed about the joint distribution of the quantities of interest, X and Y .

The relation between X and Y shall be described by a linear function f ∈ F . For each f ∈ F , the quality of the
description depends on the marginal distribution of the (absolute) residual

R f := |Y − f (X)| .

The more this distribution is concentrated near 0, the better is the description of the relation between X and Y . In the
robust LIR method that we consider in this paper, the concentration near 0 of the distribution of the residual R f is
evaluated by its median, or more generally by its p-quantile, with p ∈ ]ε, 1 − ε[. The closer to 0 the p-quantile is, the
better f describes the relation between X and Y . In particular, the best description of the relation of interest is a linear
function for which the p-quantile of the residual’s distribution is minimal.

Assuming for simplicity that the p-quantiles of the distribution of R f are unique for all f ∈ F , and that there is
a unique f0 ∈ F such that the corresponding p-quantile q0 ∈ R≥0 is minimal, we can characterize geometrically the
best description f0 as follows. For each f ∈ F and each q ∈ R≥0, let

B f ,q :=
{
(x, y) ∈ R2 : |y − f (x)| ≤ q

}
be the closed band of (vertical) width 2 q around the graph of f . Then B f0,q0 is the thinnest band of the form B f ,q

containing (X,Y) with probability at least p. This is in particular the case when Y has for each x ∈ R a conditional
distribution given X = x that is strictly unimodal and symmetric around f0(x) (see also Tasche, 2003). That is, in the
linear model Y = a0 + b0 X + E, the best description in the above sense is f0 = fa0,b0 , when the conditional distribution
of the error term E | X = x is strictly unimodal and symmetric (around 0) for all x ∈ R (e.g., when the error term E is
independent of X and normally distributed with mean 0).

2.2. The LIR analysis
Let the nonempty (possibly unbounded) rectangles [x1, x1] × [y1, y1], . . . , [xn, xn] × [yn, yn] ⊆ R2 be n independent

realizations of the random set [X, X] × [Y ,Y]. The LIR analysis consists in using likelihood inference to identify
a set of plausible regression functions. The imprecise data induce a (nonparametric) likelihood function on the set
of all joint probability distributions (of X, Y , X, X, Y , and Y) satisfying condition (1). For each f ∈ F , let C f

be the likelihood-based confidence region with cutoff point β for the p-quantile of the distribution of R f , where
β ∈

[
(max{p, 1 − p} + ε)n , 1

[
. That is, C f consists of all possible values of the p-quantile of the distribution of R f , for

all probability distributions whose likelihood exceeds β times the maximum of the likelihood function (see Cattaneo
and Wiencierz, 2012, for more details).

In order to obtain an explicit formula for the confidence regions C f , we define

k := max


k ∈ {1, . . . , n − 1} : k < (p − ε) n and

( p − ε
k

)k
(

1 − p + ε
n − k

)n−k

≤
β

nn

 ∪ {0}
 ,

k := min


k ∈ {1, . . . , n − 1} : k > (p + ε) n and

( p + ε
k

)k
(

1 − p − ε
n − k

)n−k

≤
β

nn

 ∪ {n}
 .

Clearly, the two integers k and k depend on ε, p, n, and β, and satisfy

0 ≤ k < (p − ε) n ≤ p n ≤ (p + ε) n < k ≤ n.

Moreover, when ε, p, and n are fixed, k and k are an increasing and a decreasing function of β, respectively, and
in particular, if β is sufficiently large, then k = ⌈(p − ε) n⌉ − 1 (i.e., the largest integer smaller than (p − ε) n) and
k = ⌊(p + ε) n⌋ + 1 (i.e., the smallest integer larger than (p + ε) n).
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Now, for each function f ∈ F and each imprecise observation [xi, xi] × [yi, yi], we define the lower and upper
(absolute) residuals

r f ,i := min
(x,y)∈[xi,xi]×[yi,yi]

|y − f (x)| ,

r f ,i := sup
(x,y)∈[xi,xi]×[yi,yi]

|y − f (x)| .

Obviously, r f ,i ≤ r f ,i, and r f ,i ∈ R≥0, while r f ,i ∈ R≥0. In particular, r f ,i = +∞ if and only if either the linear function f
is not constant and the rectangle [xi, xi] × [yi, yi] is unbounded, or f is constant and the interval [yi, yi] is unbounded.

As usual in statistics, r f ,(i) and r f ,(i) denote then the ith smallest lower and upper residuals, respectively. That is,
r f ,(1) ≤ · · · ≤ r f ,(n) are the ordered lower residuals and r f ,(1) ≤ · · · ≤ r f ,(n) are the ordered upper residuals. Then
Corollary 2 of Cattaneo and Wiencierz (2012) implies that

C f = [r f ,(k+1), r f ,(k)]

for all f ∈ F . That is, the likelihood-based confidence region C f ⊆ R≥0 is a nonempty closed interval, which is
bounded if and only if either f is not constant and there are at least k bounded imprecise observations, or f is constant
and there are at least k imprecise observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is bounded.

It is important to note that in general the interval C f is proper (i.e., it contains more than one value), even when β
is so large that k = ⌈(p − ε) n⌉−1 and k = ⌊(p + ε) n⌋+1. In this case, C f represents the maximum likelihood estimate
of the p-quantile of the distribution of R f , which in general is not a single value because the data are imprecise
and quantiles of a distribution are not necessarily unique. For example, if n is even, ε = 0, and p = 1/2, then
⌈(p − ε) n⌉ = ⌊(p + ε) n⌋ = n/2, and thus the maximum likelihood estimate of the p-quantile (i.e., the median) of the
distribution of R f is [r f ,(n/2), r f ,(n/2+1)].

Hence, for each linear function f ∈ F , we have an interval estimate C f for the p-quantile of the distribution of
the (absolute) residual R f . We would like to select the regression function f ∈ F by minimizing this estimate, but
comparing the intervals C f gives us only a partial order on F . The linear functions f ∈ F that are minimal according
to this partial order are said to be undominated. That is, f is undominated if and only if there is no f ′ ∈ F such that
r f ′,(k) < r f ,(k+1). In order to simplify the description of the undominated functions, define

qLRM := inf
f∈F

r f ,(k)

(the name qLRM shall be clarified in Subsection 3.1). The set of all undominated regression functions

U := { f ∈ F : r f ,(k+1) ≤ qLRM}

is the result of the robust LIR method considered in this paper. It represents the whole uncertainty about the linear
function that best describes the relation between X and Y , including the statistical uncertainty due to the finite sample
as well as the indetermination related to the fact that the quantities are only imprecisely observed.

3. An exact algorithm for LIR

We now present an exact algorithm for determining the result of the robust LIR analysis described in Section 2.
That is, an exact algorithm for calculating the set U of all undominated regression functions, given n nonempty
(possibly unbounded) rectangles [x1, x1] × [y1, y1], . . . , [xn, xn] × [yn, yn] ⊆ R2 and the two integers k and k with
0 ≤ k < k ≤ n. The algorithm consists of two parts: in the first one, we determine the bound qLRM , which is then used
in the second part to identify the setU. As we will see, the computational complexity of the algorithm is O(n3 log n).
We have implemented this exact algorithm as part of an R package, which we will briefly introduce at the end of the
present section.
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3.1. Part 1: Determining the bound qLRM

Let D be the set of all i ∈ {1, . . . , n} such that the rectangle [xi, xi] × [yi, yi] is bounded. Then define B := {0} if
there are less than k bounded imprecise observations (i.e., if |D| < k, where |D| denotes the cardinality of the set D),
and

B :=
{

yi − y j

xi − x j
: (i, j) ∈ D2 and xi > x j and yi > y j

}
∪

{
yi − y j

xi − x j
: (i, j) ∈ D2 and xi > x j and yi < y j

}
∪

{
yi − y j

xi − x j
: (i, j) ∈ D2 and xi > x j and yi < y j

}
∪

{
yi − y j

xi − x j
: (i, j) ∈ D2 and xi > x j and yi > y j

}
∪ {0}

otherwise (i.e., if |D| ≥ k). The central ideas of the first part of the algorithm are that in order to obtain qLRM it suffices
to consider the linear functions fa,b with slope b ∈ B, and that for each slope b the intercept a ∈ R minimizing r fa,b,(k)
can be easily calculated, since the problem becomes one-dimensional. These ideas are formalized in the following
theorem, but first we need some additional definitions. For each b ∈ R and each i ∈ {1, . . . , n}, define

zb,i =


yi − b xi if b < 0,
yi if b = 0,
yi − b xi if b > 0,

zb,i =


yi − b xi if b < 0,
yi if b = 0,
yi − b xi if b > 0.

For each b ∈ R and each j ∈ {1, . . . , n}, as usual, zb,( j) and zb,( j) denote then the jth smallest value among the zb,i and
among the zb,i, respectively. Furthermore, for each b ∈ R and each j ∈ {1, . . . , n − k + 1}, let zb,[ j] denote the kth
smallest value among the zb,i such that zb,i ≥ zb,( j).

Theorem 1. If there are less than k imprecise observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is bounded,
then

qLRM = +∞,

{ f ∈ F : r f ,(k) = qLRM} = F .

Otherwise (i.e., when there are at least k imprecise observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is
bounded),

qLRM =
1
2 min

(b, j)∈B×{1,...,n−k+1}
(zb,[ j] − zb,( j)),

{ f ∈ F : r f ,(k) = qLRM} ⊇

 fa′,b′ : (b′, j′) ∈ arg min
(b, j)∈B×{1,...,n−k+1}

(zb,[ j] − zb,( j)) and a′ = 1
2 (zb′,( j′) + zb′,[ j′])

 ,

where the set on the left-hand side is infinite when the inclusion is strict. However, the inclusion is an equality when
the following condition is satisfied: if there is a pair (i, j) ∈ D2 such that xi = x j and max{yi, y j}−min{yi, y j} = 2 qLRM ,
then i , j and the two intervals [yi, yi] and [y j, y j] are nested (i.e., either [yi, yi] ⊆ [y j, y j], or [y j, y j] ⊆ [yi, yi]).

For each linear function f ∈ F , we have a likelihood-based confidence region [r f ,(k+1), r f ,(k)] for the p-quantile of
the residual’s distribution. Hence, the functions f ∈ F minimizing r f ,(k) can be interpreted as the results of a minimax
approach to our regression problem: they are called Likelihood-based Region Minimax (LRM) regression functions
(see Cattaneo, 2007). For these functions, the upper endpoint of the interval estimate of the p-quantile of the residual’s
distribution is qLRM , which explains its name.

Theorem 1 implies in particular that an LRM regression function always exists, though it is not necessarily unique.
When it is unique, it is denoted by fLRM . In this case, B fLRM ,qLRM is the thinnest band of the form B f ,q containing at least
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k imprecise observations, for all f ∈ F and all q ∈ R≥0. More generally, if there are at least k imprecise observations
[xi, xi]× [yi, yi] such that the interval [yi, yi] is bounded, then 2 qLRM is the (vertical) width of the thinnest bands of the
form B f ,q containing at least k imprecise observations (there can be more than one such bands, but only finitely many
when the condition at the end of Theorem 1 is satisfied).

If all interval data are degenerate: xi = xi and yi = yi for all i ∈ {1, . . . , n} (i.e., the imprecise data are in
fact precise), then the LRM regression functions correspond to the least quantile of squares (or absolute residuals)
regression functions f ∈ F minimizing the (square of the) kth smallest absolute residual r f ,(k) = r f ,(k) (see Rousseeuw
and Leroy, 1987). That is, the LRM regression functions can be interpreted as the results of a generalization of the
least quantile of squares regression to the case of imprecise data. The first part of our algorithm corresponds to a
generalization (to the case of general quantiles and imprecise data) of the first exact algorithm for least median of
squares regression, proposed by Steele and Steiger (1986) (see also Rousseeuw and Leroy, 1987, Chapter 5).

The key result behind Theorem 1 is that (when the condition at the end of the theorem is satisfied and there are at
least k imprecise observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is bounded) if B f ′,q′ is one of the thinnest
bands of the form B f ,q containing at least k imprecise observations, then the union of these imprecise observations
touches one of the two borders of B f ′,q′ in at least two different points. This is a simple consequence of general results
by Cheney (1982, Chapters 1 and 2), as suggested by Stromberg (1993). From this property it follows that one of the
two borders of B f ′,q′ (which obviously have the same slope as f ′) is the line determined by two points on the borders
of the imprecise observations contained in B f ′,q′ . Hence, either the slope of f ′ is 0, or it is determined by two vertices
of a pair of bounded imprecise observations contained in B f ′,q′ . The set B consists of all the possible slopes that can
be obtained in this way: they are at most 4

(
n
2

)
+ 1. For each possible slope b ∈ B, finding the thinnest bands of the

form B fa,b,q containing at least k imprecise observations (for all a ∈ R and all q ∈ R≥0) corresponds to finding the
shortest intervals (of the form [a − q, a + q]) containing at least k of the n intervals [zb,1, zb,1], . . . , [zb,n, zb,n]. This is a
finite problem: it suffices to consider the intervals [zb,( j), zb,[ j]] with j ∈ {1, . . . , n − k + 1}.

Therefore, Theorem 1 gives us an algorithm for determining the bound qLRM , by reducing the minimization of
r f ,(k) on the infinite set F to a minimization problem on the finite set B× {1, . . . , n − k + 1}. Moreover, when there are
finitely many LRM regression functions, Theorem 1 gives us an algorithm for finding all of them. An explicit formula
for the set of all LRM regression functions in the general case (i.e., also when the condition at the end of the theorem
is not satisfied) can be easily obtained, but requires several case distinctions and goes beyond the scope of the present
paper.

3.2. Part 2: Identifying the setU

After having determined the bound qLRM , in the second part of the algorithm we identify the setU of all undomi-
nated regression functions (i.e., the result of the robust LIR analysis described in Section 2).

Theorem 2.

U =

 fa,b : b ∈ R and a ∈
n−k⋃
j=1

[zb,(k+ j) − qLRM , zb,( j) + qLRM]

 .

A linear function f ∈ F is undominated if and only if r f ,(k+1) ≤ qLRM . That is, if and only if the band B f ,qLRM

intersects at least k + 1 imprecise observations. For each possible slope b ∈ R, finding all the bands of the form
B fa,b,qLRM intersecting at least k + 1 imprecise observations (for all a ∈ R) corresponds to finding all the intervals of the
form [a − qLRM , a + qLRM] intersecting at least k + 1 of the n intervals [zb,1, zb,1], . . . , [zb,n, zb,n]. For each b ∈ R and
each nonempty set I ⊆ {1, . . . , n}, the interval [a − qLRM , a + qLRM] (with a ∈ R) intersects all the intervals [zb,i, zb,i]
with i ∈ I if and only if a ∈ [maxi∈I zb,i − qLRM , mini∈I zb,i + qLRM]. Therefore,

U =

 fa,b : b ∈ R and a ∈
⋃

I⊆{1,...,n} : |I|=k+1

[
max
i∈I

zb,i − qLRM , min
i∈I

zb,i + qLRM

] .

Theorem 2 gives a simpler expression for U, in which the number of intervals in the union is reduced from
(

n
k+1

)
to

n − k.

6



Hence, Theorem 2 gives us an algorithm for identifying, for each possible slope b ∈ R, the set of all intercepts
a ∈ R such that the linear function fa,b is undominated. This suffices for most practical purposes, but Theorem 2 also
enables us to precisely describe as union of finitely many (possibly unbounded) polygons the set

U′ :=
{
(a, b) ∈ R2 : fa,b ∈ U

}
of all the intercept-slope pairs corresponding to the undominated regression functions. More precisely,U′ is a subset
of the plane R2 bounded by finitely many line segments and half-lines. However, U′ is not necessarily convex nor
connected, and if there are imprecise observations [xi, xi] × [yi, yi] such that the interval [xi, xi] is unbounded and
[yi, yi] , R, thenU′ is not even necessarily closed.

Consider first the case with no imprecise observations [xi, xi] × [yi, yi] such that the interval [xi, xi] is unbounded
and [yi, yi] , R. In this case, for each i ∈ {1, . . . , n}, the function b 7→ zb,i on R is either continuous and piecewise
linear, or constant equal −∞, while the function b 7→ zb,i on R is either continuous and piecewise linear, or constant
equal +∞. Therefore, for each j ∈ {1, . . . , n − k}, the function b 7→ zb,(k+ j) − qLRM on R is either continuous and
piecewise linear, or constant equal −∞, while the function b 7→ zb,( j) + qLRM on R is either continuous and piecewise
linear, or constant equal +∞. Thus, Theorem 2 implies thatU′ is a closed subset of the plane R2 bounded by finitely
many line segments and half-lines. That is, U′ is the union of finitely many (possibly unbounded) polygons (see for
example Alexandrov, 2005, Subsection 1.1.1).

If [xi, xi] × [yi, yi] is an imprecise observation such that the interval [xi, xi] is unbounded and [yi, yi] , R, then at
least one of the two functions b 7→ zb,i and b 7→ zb,i on R has a discontinuity at b = 0. Therefore, in this case, the
functions b 7→ zb,(k+ j) − qLRM and b 7→ zb,( j) + qLRM on R (with j ∈ {1, . . . , n − k}) can be discontinuous at b = 0. As
a consequence, Theorem 2 implies that U′ is a subset of the plane R2 bounded by finitely many line segments and
half-lines, butU′ is not necessarily closed. However, the two partsU′ ∩ (R × {0}) andU′ ∩ (R × R,0) are relatively
closed in R × {0} and R × R,0, respectively.

3.3. Computational complexity

The algorithm consisting of the two parts presented in Subsections 3.1 and 3.2 is the first exact algorithm to
determine the result of the robust LIR analysis in the case of simple linear regression with interval data. It has worst-
case time complexity O(n3 log n), exactly as the first exact algorithm for least median of squares regression (see Steele
and Steiger, 1986).

In the first part of the algorithm, described in Subsection 3.1, for each possible slope b ∈ B, we must determine the
pair (zb,( j), zb,[ j]) (with j ∈ {1, . . . , n− k+1}) such that the difference zb,[ j] − zb,( j) is minimal. We can do this as follows:
after having calculated the values zb,1, . . . , zb,n and zb,1, . . . , zb,n, we sort the two lists, obtaining zb,i1 , . . . , zb,in (with
zb,i j = zb,( j)) and zb,(1), . . . , zb,(n). Then, for each j from 1 to n − k + 1, we retrieve the pair consisting of the jth entry
(i.e., zb,i j ) in the first list and of the kth entry in the second one, and after that we remove the value zb,i j from the second
list. In this way, the pairs of values that we have retrieved include all the pairs (zb,( j), zb,[ j]) with j ∈ {1, . . . , n − k + 1}
(and possibly some irrelevant additional pairs with larger differences, if some of the zb,i are equal), and we did not
have to calculate a new list of zb,i for each j in order to determine zb,[ j].

Hence, for each possible slope, we have to calculate and sort two lists of length n, which can be done in time
O(n log n), and then for each j ∈ {1, . . . , n − k + 1}, we have to search and remove a value from the second list,
which can be done in time O(log n) using balanced trees (see for example Knuth, 1998, Subsection 6.2.3). Therefore,
since there are at most 4

(
n
2

)
+ 1 possible slopes, the worst-case time complexity of the first part of the algorithm is

O(n3 log n).
In the second part of the algorithm, described in Subsection 3.2, for a given slope b ∈ R, we must determine the

pairs (zb,(k+ j), zb,( j)) for all j ∈ {1, . . . , n − k}. This can be done in time O(n log n), since it suffices to calculate and
sort the two lists zb,1, . . . , zb,n and zb,1, . . . , zb,n, and then, for each j from 1 to n − k, retrieve the pair consisting of the
(k + j)th entry in the first list and of the jth entry in the second one.

For example, if we want to graphically represent the setU′ of all the intercept-slope pairs (a, b) ∈ R2 correspond-
ing to the undominated regression functions fa,b, then it suffices to consider a finite number of possible values for the
slope b, resulting in a worst-case time complexity of O(n log n) for the second part of the algorithm. However, if the
goal is to precisely describe the setU′ as union of finitely many (possibly unbounded) polygons, then the (worst-case)
number of values b ∈ R that must be considered depends on n. In this case, it suffices to consider all values b ∈ R
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such that some of the 2 n graphs of the functions b 7→ zb,i and b 7→ zb,i cross each other, and five additional values
for the slope b. More precisely, these additional values are 0, a positive and a negative value sufficiently near 0 (in
order to clarify what happens in the limits b ↓ 0 and b ↑ 0), and finally a positive and a negative value sufficiently
far from 0 (in order to clarify what happens in the limits b ↑ +∞ and b ↓ −∞). Therefore, the worst-case number
of values b ∈ R that must be considered is 2

(
2 n
2

)
+ 5, and so the worst-case time complexity of the second part of

the algorithm is O(n3 log n), when the goal is to precisely describe the set U′ as union of finitely many (possibly
unbounded) polygons.

Altogether, the worst-case time complexity of the whole algorithm for the robust LIR analysis is thus O(n3 log n).

3.4. R package

We have implemented the presented algorithm in R (R Development Core Team, 2012) as part of a package called
linLIR (Wiencierz, 2012). This R package is created to implement LIR methods for the case of linear regression with
interval data. The available version of the linLIR package includes a function to create a particular data object for
interval-valued observations (idf.create), the function s.linlir to perform the LIR analysis for two variables out
of the data object, and some associated methods for the generic functions print, summary, and plot. Both parts of
the algorithm are incorporated in the s.linlir function. The corresponding plot method provides tools to visualize
the results including, e.g., the set U′. Moreover, the R package contains two example data sets including the one
analyzed in Section 4. The current version of the R package is not optimized for speed, yet it provides a ready-to-use
first implementation of the robust LIR method for linear regression with interval data.

4. Example

In many practical settings data are only available with limited precision. Consider, for example, the situation where
it shall be analyzed how particulate matter concentration in the air varies with surface temperature. To investigate this
relation, data is collected. The temperature is measured by means of a thermometer at randomly selected points in time
during a certain period. From the instructions manual of the thermometer it is known that the measurement accuracy
is, e.g., ±0.05◦C, which translates the measured values into small intervals of width 0.1◦C. Furthermore, there is a
nearby measuring station for air pollution where four times a day recent data about particulate matter concentration
is published, each time referring to a period of six hours. Among the published data there are the minimum and the
maximum concentration measured during the corresponding period. Thus, for each temperature measurement at a
particular time, the available information is that the corresponding particulate matter concentration lies in the interval
of values measured during the corresponding six-hour period. That is, also this variable is only imprecisely observed.

The data set to be analyzed in the described situation might be similar to the simulated data set shown in Figure 1.
This data set consists of 514 interval-valued observations of two variables. The data of the independent variable
each have the same amount of imprecision, because the indetermination stems from the measurement accuracy of the
thermometer determining the width of the intervals. By contrast, the width of the interval-valued observations of the
dependent variable is given by the range of measured values during a fixed period and therefore varies a lot.

In the remainder of this section, we use the simulated data set to illustrate the implementation of the robust LIR
method in the linLIR package. We here assume that the data are correct in the sense that the observed rectangles
contain the correct precise values with probability one, i.e., we assume ε = 0. If we had concerns about the data
quality, e.g., if it were likely that there have been some mistakes in recording the data, a positive ε could be considered.
This would lead to a more imprecise result of the LIR analysis, reflecting the fact that there is additional uncertainty
in the data.

Before conducting the LIR analysis, we have to choose the quantile p to be considered and the cutoff point β. It can
be proved that the LIR analysis yields the most robust results when the median of the distribution of the residuals is
considered, as for the least quantile of squares regression (see also Rousseeuw and Leroy, 1987, Chapter 3). Therefore,
we set p = 0.5. Furthermore, we choose β = 0.5 as cutoff point for the likelihood-based confidence regions C f with
f ∈ F . The confidence regions C f are asymptotically (conservative) confidence intervals of level Fχ2 (−2 log β),
where Fχ2 is the cumulative distribution function of the chi-square distribution with 1 degree of freedom. Thus, the
choice of β = 0.5 implies an asymptotic lower bound for the confidence level of C f of 76.1% (see Cattaneo and
Wiencierz, 2012). The s.linlir function of the R package provides also the finite-sample level of the (conservative)
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Figure 1: Simulated data set with 514 interval-valued observations of two variables, labeled as temperature and particulate matter concentration.

confidence intervals, which can be derived by simple combinatorial arguments. In the present situation the exact
minimum confidence level is 78.28%. A thorough exhibition of the argumentation, however, would go beyond the
scope of the present paper.

Using the function s.linlir of the R package linLIR with the above choices, we obtain the following results:

Estimated parameters of the function f.lrm:

intercept of f.lrm: 15.61906

slope of f.lrm: 1.293166

Ranges of parameter values of the undominated functions:

intercept of f in [6.537292,23.53457]

slope of f in [0.6552,2.156]

Number of observations: 514

LIR settings:

p: 0.5 beta: 0.5 epsilon: 0 k.l: 243 k.u: 271

confidence level of each confidence interval: 78.28 %

We find that there is a unique function that minimizes the right endpoint of the confidence interval for the median of
the residuals’ distribution, namely fLRM(x) = 15.62 + 1.29 x. This function corresponds to the line at the center of the
thinnest closed band containing at least k = 271 of the given imprecise observations. The set U of all undominated
regression functions covers lines with intercepts between 6.54 and 23.53 and slopes ranging from 0.66 to 2.16. The
closed bands B f ,qLRM of (vertical) width 2 qLRM = 8.18 around the lines f ∈ U each intersect at least k + 1 = 244
imprecise observations. To visualize the results, we can use the plot method associated with the output of the
function s.linlir. One can choose between plotting a random selection of functions out of the setU, or the entire
set U′. Figure 2 shows 500 randomly selected undominated regression lines, which clearly indicate that there is a
positive correlation between the investigated variables. The set of all intercept-slope combinations corresponding to
the undominated regression lines is displayed in Figure 3, providing a nice illustration of the complex shape of this
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Figure 2: Selection of 500 undominated regression lines out of the setU. The function fLRM is highlighted.

set. In both cases, the line fLRM or the corresponding intercept-slope combination (bLRM , aLRM) is highlighted.
As we already mentioned at the end of Section 3, the current version of the function s.linlir has not been

optimized for speed yet. The computations for the present analysis took roughly 70 minutes on a desktop computer,
most of the time is needed for the first part of the algorithm, where qLRM is determined.

5. Conclusion

In this paper, we considered the LIR approach to regression for imprecisely observed quantities (see Cattaneo and
Wiencierz, 2012, 2011). The result of a LIR analysis is in general set-valued: it consists of all regression functions
that cannot be excluded on the basis of likelihood inference. These regression functions are said to be undominated.
In this paper, we considered in particular the robust LIR method based on the residuals’ quantiles, in the special case
of simple linear regression with interval data. For this situation, we proved that the set of all the intercept-slope pairs
corresponding to the undominated regression functions is the union of finitely many polygons, and we gave an exact
algorithm for determining this set (i.e., for determining the set-valued result of the robust LIR method).

We have implemented this exact algorithm as part of the R package linLIR (Wiencierz, 2012). In the present
paper, we illustrated the implementation of the robust LIR method in the linLIR package by means of an example.
Furthermore, we showed that the algorithm has worst-case time complexity O(n3 log n). In fact, the first part of the
algorithm is related to the first exact algorithm for least median of squares regression, which has the same (asymptotic)
worst-case time complexity (see Steele and Steiger, 1986; Rousseeuw and Leroy, 1987). This algorithm for least
median of squares regression was then improved (see for example Souvaine and Steele, 1987; Edelsbrunner and
Souvaine, 1990; Carrizosa and Plastria, 1995; Mount et al., 2007) and extended to multiple linear regression (see for
instance Stromberg, 1993; Hawkins, 1993; Watson, 1998; Bernholt, 2005). In future work, we intend to do the same
with the algorithm for the robust LIR method. Moreover, this algorithm can also be generalized to imprecise data
other than intervals.
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Figure 3: SetU′ of all intercept-slope pairs corresponding to the undominated regression functions. The point (bLRM , aLRM) is highlighted.

Appendix A. Proofs

The following lemma gives us a method for writing the union of all
(

n
k

)
possible intersections of k out of n intervals

as the union of n − k + 1 other intervals. It will be used in the proof of Theorem 2, but can be useful also for other
problems, such as constructing an explicit formula for the set of all LRM regression functions in the general case (i.e.,
also when the condition at the end of Theorem 1 is not satisfied).

Lemma 1. If w1, . . . ,wn,w1, . . . ,wn ∈ R with wi ≤ wi for all i ∈ {1, . . . , n}, then for each k ∈ {1, . . . , n},⋃
I⊆{1,...,n} : |I|=k

⋂
i∈I

[wi,wi] =
n⋃

j=k

[w( j),w( j−k+1)],

where for each j ∈ {1, . . . , n}, as usual, w( j) and w( j) denote the jth smallest value among w1, . . . ,wn and among
w1, . . . ,wn, respectively.

This lemma can be proved as follows. Assume without loss of generality that w1 ≤ · · · ≤ wn (i.e., w( j) = w j),
and for all j, j′ ∈ {1, . . . , n} with j ≤ j′, let w j: j′ denote the jth smallest value among w1, . . . ,w j′ (hence, in particular,
w( j) = w j:n). Then, for each set I ⊆ {1, . . . , n} with cardinality |I| = k,⋂

i∈I

[wi,wi] =
[
max
i∈I

wi,min
i∈I

wi

]
=

[
wmaxI,min

i∈I
wi

]
⊆ [wmaxI,wmaxI−k+1:maxI],

and obviously maxI ∈ {k, . . . , n}. Furthermore, for each j ∈ {k, . . . , n}, there are at most j − k indices i ∈ {1, . . . , n}
such that wi < w( j−k+1), and thus there is a set I j ⊆ {1, . . . , j} with cardinality |I j| = k such that wi ≥ w( j−k+1) for all
i ∈ I j. Therefore,

n⋃
j=k

[w( j),w( j−k+1)] ⊆
n⋃

j=k

[
max
i∈I j

wi,min
i∈I j

wi

]
=

n⋃
j=k

⋂
i∈I j

[wi,wi] ⊆
⋃

I⊆{1,...,n} : |I|=k

⋂
i∈I

[wi,wi]

⊆
⋃

I⊆{1,...,n} : |I|=k

[wmaxI,wmaxI−k+1:maxI] =
n⋃

j=k

[w j,w j−k+1: j].
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Hence, in order to complete the proof of the lemma, it suffices to show that the first and last unions of n−k+1 intervals
in the above expression are equal. To this goal, we first show that for each j ∈ {k, . . . , n − 1},

[w j,w j−k+1: j] ∪ [w j+1,w j+1−k+1: j+1] = [w j,w( j−k+1)] ∪ [w j+1,w j+1−k+1: j+1]. (A.1)

Since w( j−k+1) ≤ w j−k+1: j always holds, (A.1) could be wrong only if w( j−k+1) < w j−k+1: j, which can be the case only if
there is an index i ∈ { j + 1, . . . , n} such that wi ≤ w( j−k+1), but then

w j ≤ w j+1 ≤ wi ≤ wi ≤ w( j−k+1) < w j−k+1: j ≤ w j+1−k+1: j+1,

and thus both unions in (A.1) are equal to the interval [w j,w j+1−k+1: j+1]. Therefore, using (A.1) for each j from k to
n − 1, we obtain

n⋃
j=k

[w j,w j−k+1: j] =

n−1⋃
j=k

[w j,w( j−k+1)]

 ∪ [wn,wn−k+1:n] =

n−1⋃
j=k

[w( j),w( j−k+1)]

 ∪ [w(n),w(n−k+1)] =
n⋃

j=k

[w( j),w( j−k+1)].

Appendix A.1. Proof of Theorem 1

As noted in Subsection 2.2, for each linear function f ∈ F , we have r f ,(k) < +∞ if and only if either f is not
constant and there are at least k bounded imprecise observations, or f is constant and there are at least k imprecise
observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is bounded. Therefore, if there are less than k imprecise
observations [xi, xi] × [yi, yi] such that the interval [yi, yi] is bounded, then r f ,(k) = +∞ for all f ∈ F , which proves
the first part of the theorem. Otherwise, if there are at least k imprecise observations [xi, xi] × [yi, yi] such that the
interval [yi, yi] is bounded, as we assume from now on, then r f ,(k) < +∞ at least for the constant functions f ∈ F ,
which implies qLRM < +∞.

For each function fa,b ∈ F and each imprecise observation [xi, xi] × [yi, yi],

zb,i = inf
(x,y)∈[xi,xi]×[yi,yi]

(y − b x), (A.2)

zb,i = sup
(x,y)∈[xi,xi]×[yi,yi]

(y − b x), (A.3)

and therefore

r fa,b,i = max
 sup

(x,y)∈[xi,xi]×[yi,yi]
(y − a − b x), sup

(x,y)∈[xi,xi]×[yi,yi]
(a + b x − y)

 = max{zb,i − a, a − zb,i}.

Hence, the kth smallest upper residual of fa,b is

r fa,b,(k) = min
I⊆{1,...,n} : |I|=k

max
i∈I

max{zb,i − a, a − zb,i} = min
I⊆{1,...,n} : |I|=k

max
{
max
i∈I

zb,i − a, a −min
i∈I

zb,i

}
.

Now, for each set I ⊆ {1, . . . , n} with cardinality |I| = k, there is a j ∈ {1, . . . , n − k + 1} such that zb,( j) = mini∈I zb,i,
and in this case, since zb,i ≥ zb,( j) for all i ∈ I, the smallest possible value of maxi∈I zb,i is zb,[ j]. Thus we obtain

r fa,b,(k) = min
j∈{1,...,n−k+1}

max{zb,[ j] − a, a − zb,( j)}.

Clearly, for each b ∈ R and j ∈ {1, . . . , n−k+1} such that the interval [zb,( j), zb,[ j]] is bounded, the maximum of zb,[ j]−a
and a − zb,( j) is uniquely minimized by the interval center a = 1/2 (zb,( j) + zb,[ j]). This implies

qLRM = inf
(a,b)∈R2

r fa,b,(k) =
1
2 inf

(b, j)∈R×{1,...,n−k+1}
(zb,[ j] − zb,( j)),

{ f ∈ F : r f ,(k) = qLRM} =

 fa′,b′ : (b′, j′) ∈ arg min
(b, j)∈R×{1,...,n−k+1}

(zb,[ j] − zb,( j)) and a′ = 1
2 (zb′,( j′) + zb′,[ j′])

 .
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Therefore, in order to complete the proof of the theorem, it suffices to show that the set

M :=

b′ : (a′, b′) ∈ arg min
(a,b)∈R2

r fa,b,(k)

 =
b′ : (b′, j′) ∈ arg min

(b, j)∈R×{1,...,n−k+1}
(zb,[ j] − zb,( j))


intersects B (i.e.,M∩B , ∅), thatM is infinite whenM * B, and thatM ⊆ B when the condition at the end of the
theorem is satisfied.

For each set I ⊆ {1, . . . , n} with cardinality |I| = k, let gI be the function (a, b) 7→ maxi∈I r fa,b,i on R2. Then, for
all a, b ∈ R,

r fa,b,(k) = min
I⊆{1,...,n} : |I|=k

gI(a, b).

Let S be the (nonempty) set of all sets I ⊆ {1, . . . , n} with cardinality |I| = k such that inf(a,b)∈R2 gI(a, b) = qLRM .
Then, defining for each I ∈ S,

MI :=

b′ : (a′, b′) ∈ arg min
(a,b)∈R2

gI(a, b)

 ,

we obtainM =
⋃
I∈SMI. Hence, in order to complete the proof of the theorem, it suffices to show for each I ∈ S,

that the set MI intersects B (i.e., MI ∩ B , ∅), that MI is infinite when MI * B, and that MI ⊆ B when the
condition at the end of the theorem is satisfied.

Let I ∈ S, and consider first the case with I * D. In this case, there is an i ∈ I such that the rectangle
[xi, xi] × [yi, yi] is unbounded, and since qLRM < +∞, there are a, b ∈ R such that r fa,b,i < +∞. As noted in Sub-
section 2.2, this implies that the interval [yi, yi] is unbounded, and then r fa,b,i < +∞ if and only if the function fa,b is
constant. That is, gI(a, b) < +∞ if and only if b = 0, and thereforeMI = {0} ⊆ B.

Consider now the case with I ⊆ D (i.e., the rectangle [xi, xi] × [yi, yi] is bounded for all i ∈ I), which implies in
particular |D| ≥ k. In this case,

gI(a, b) = max
i∈I

max
(x,y)∈{xi,xi}×{yi,yi}

|y − a − b x|

for all a, b ∈ R, since for a bounded imprecise observation [xi, xi] × [yi, yi], the upper residual r fa,b,i is the max-
imum of the four residuals corresponding to the vertices of the rectangle [xi, xi] × [yi, yi]. The Existence Theo-
rem of Cheney (1982, page 20) implies then that arg min(a,b)∈R2 gI(a, b) is not empty (i.e., MI , ∅). Let thus
(a′, b′) ∈ arg min(a,b)∈R2 gI(a, b) (hence, b′ ∈ MI). From the Characterization Theorem of Cheney (1982, page 35) it
follows that there are (x, y), (x′, y′) ∈

⋃
i∈I{xi, xi} × {yi, yi} such that either x , x′ and both points (x, y), (x′, y′) lie on

the graph of one of the two functions fa′+qLRM ,b′ and fa′−qLRM ,b′ , or x = x′ and the point (x, y) lies on the graph of the
function fa′+qLRM ,b′ , while the point (x′, y′) lies on the graph of the function fa′−qLRM ,b′ .

All the (bounded) rectangles [xi, xi] × [yi, yi] with i ∈ I are contained in the closed band B fa′ ,b′ ,qLRM of (vertical)
width 2 qLRM around the graph of the function fa′,b′ , and the points (x, y), (x′, y′) are vertices of these rectangles lying
on the border of the band B fa′ ,b′ ,qLRM . If x , x′, then (x, y) and (x′, y′) lie on the same border of B fa′ ,b′ ,qLRM , and thus
determine its slope

b′ =
y − y′

x − x′
.

It can be easily checked that the set B contains all the slopes that can be obtained in this way by the vertices of the
bounded imprecise observations [xi, xi] × [yi, yi]. Therefore, if x , x′, then b′ ∈ B.

Assume now that b′ < B. In order to complete the proof of the theorem, it suffices to show that in this case the set
MI is infinite and intersects B, and that the condition at the end of the theorem cannot be satisfied. The assumption
b′ < B implies x = x′. Hence, the points (x, y) and (x′, y′) are two vertices of two (bounded) rectangles [xi, xi]× [yi, yi]
and [x j, x j] × [y j, y j] (with i, j ∈ I), and lie on the upper and on the lower borders of the band B fa′ ,b′ ,qLRM , respectively.
If either x , xi and x′ , x j, or x , xi and x′ , x j, then the intervals [xi, xi] and [x j, x j] are proper (i.e., they contain
more than one value) and extend on the same side of x = x′, but this would imply b′ = 0 ∈ B, because the two
rectangles [xi, xi]× [yi, yi] and [x j, x j]× [y j, y j] must be contained in the band B fa′ ,b′ ,qLRM . Therefore, xi = x j or xi = x j,
and max{yi, y j} −min{yi, y j} = y− y′ = 2 qLRM . That is, one of the two pairs (i, j), ( j, i) ∈ I2 ⊆ D2 satisfies the premise
of the condition at the end of the theorem. Now, if [yi, yi] ⊆ [y j, y j], then the interval [x j, x j] must be degenerate (i.e.,
x j = x j), because otherwise we would have b′ = 0 ∈ B, since the rectangle [x j, x j] × [y j, y j] must be contained in
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the band B fa′ ,b′ ,qLRM . Analogously, if [y j, y j] ⊆ [yi, yi], then xi = xi. Hence, if the two intervals [yi, yi] and [y j, y j] are
nested, then one of the two pairs (i, i), ( j, j) ∈ D2 satisfies the premise of the condition at the end of the theorem. So
this condition is contradicted by at least one of the four pairs (i, j), ( j, i), (i, i), ( j, j) ∈ D2.

In order to complete the proof of the theorem, it remains to show that the setMI is infinite and intersects B. We
have that b ∈ MI if and only if there is an a ∈ R such that the closed band B fa,b,qLRM of (vertical) width 2 qLRM around
the graph of the function fa,b contains the 4 k vertices of the rectangles [xi, xi] × [yi, yi] with i ∈ I. For each b ∈ R,
since the two vertices (x, y), (x′, y′) satisfy x = x′ and y − y′ = 2 qLRM , the band B fa,b,qLRM can contain the 4 k vertices
only if a = ab := 1/2 (y′ + y) − b x (i.e., only if the midpoint of (x, y) and (x′, y′) is contained in the graph of the linear
function fa,b). Now, for each vertex (x′′, y′′), the set of all b ∈ R such that the band B fab ,b,qLRM contains (x′′, y′′) is the
closed interval

Bx′′,y′′ =



[
y′ − y′′

x′ − x′′
,

y − y′′

x − x′′

]
if x′′ < x = x′,

R if x′′ = x = x′,[
y′′ − y
x′′ − x

,
y′′ − y′

x′′ − x′

]
if x′′ > x = x′,

where the second case is implied by the fact that Bx′′,y′′ is not empty (since b′ ∈ MI ⊆ Bx′′,y′′ ), while in the other two
cases the endpoints of Bx′′,y′′ are the slopes b determined by the pairs of points (x, y), (x′′, y′′) or (x′, y′), (x′′, y′′) lying
on the same border of B fab ,b,qLRM . Therefore,

MI =
⋂
i∈I

⋂
(x′′,y′′)∈{xi,xi}×{yi,yi}

Bx′′,y′′

is a (nonempty) closed interval, which is eitherR or it is bounded. WhenMI = R, obviously it is infinite and intersects
B. Otherwise,MI is a bounded interval whose endpoints are elements of B, since they are slopes b determined by a
pair of vertices lying on the same border of B fab ,b,qLRM . Hence, also in this caseMI intersects B and is infinite, since
b′ < B is an interior point of the intervalMI.

Appendix A.2. Proof of Theorem 2
For each function fa,b ∈ F and each imprecise observation [xi, xi] × [yi, yi], using (A.2) and (A.3), we obtain that

r fa,b,i ≤ qLRM if and only if the set{
y − fa,b(x) : (x, y) ∈ [xi, xi] × [yi, yi]

}
= [zb,i − a, zb,i − a]

intersects the interval [−qLRM , qLRM]. That is, r fa,b,i ≤ qLRM if and only if a ∈ [zb,i − qLRM , zb,i + qLRM]. Hence,
r fa,b,(k+1) ≤ qLRM if and only if there is a set I ⊆ {1, . . . , n} such that |I| = k + 1 and a ∈ [zb,i − qLRM , zb,i + qLRM] for
all i ∈ I. That is, using Lemma 1 with k = k + 1, we obtain that r fa,b,(k+1) ≤ qLRM if and only if a lies in the set

⋃
I⊆{1,...,n} : |I|=k+1

⋂
i∈I

[zb,i − qLRM , zb,i + qLRM] =
n⋃

j=k+1

[zb,( j) − qLRM , zb,( j−k) + qLRM] =
n−k⋃
j=1

[zb,(k+ j) − qLRM , zb,( j) + qLRM].

Therefore,

U = { fa,b ∈ F : r fa,b,(k+1) ≤ qLRM} =

 fa,b : b ∈ R and a ∈
n−k⋃
j=1

[zb,(k+ j) − qLRM , zb,( j) + qLRM]

 .
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