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On maxitive integration

Marco E. G. V. Cattaneo
Department of Statistics, LMU Munich

Abstract

The Shilkret integral is maxitive (i.e., the integral of a pointwise supre-
mum of functions is the supremum of their integrals), but defined only for
nonnegative functions. In the present paper, some properties of this inte-
gral (such as subadditivity and a law of iterated expectations) are studied,
in comparison with the additive and Choquet integrals. Furthermore, the
definition of a maxitive integral for all real functions is discussed. In par-
ticular, a convex, maxitive integral is introduced and some of its properties
are derived.

1 Introduction

As descriptions of uncertain knowledge, nonadditive measures are an alternative
to probability measures. Of particular importance in applications are maxitive
measures (i.e., the measure of a union of sets is the supremum of their measures),
because of their central role in possibility theory (initiated by Zadeh, 1978). An
integral with respect to maxitive measures was introduced by Shilkret (1971):
it is maxitive (i.e., the integral of a pointwise supremum of functions is the
supremum of their integrals), but defined only for nonnegative functions.

The first result of the present paper is that measurability restrictions are
unnecessary with maxitive measures, since these can always be extended from a
ring of subsets to the whole power set. The rest of the paper can be divided into
two parts. In the first part (corresponding to Sections 3–5), some properties of
the Shilkret integral are derived and compared with corresponding properties
of alternative definitions of integral. These properties include subadditivity and
a law of iterated expectations. In particular, new results about the Choquet
integral (Choquet, 1954; Denneberg, 1994) are also presented: necessary and
sufficient conditions for countable comonotonic additivity and for the law of
iterated expectations.

The second part corresponds to Section 6 and pursues the definition of a
maxitive integral for all real functions. In particular, the convex integral is
introduced and some of its properties are derived, including maxitivity, con-
vexity, and a law of iterated expectations. The convex integral with respect
to completely maxitive measures is strictly related to the idempotent integral
of tropical or idempotent mathematics (Kolokoltsov and Maslov, 1997) and to
convex measures of risk (Föllmer and Schied, 2011).
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2 Maxitive measures

Let Ω be a nonempty set, and let A ⊆ P(Ω) be a collection of subsets of Ω.
When κ is a cardinal, A is said to be closed under κ-union if and only if

⋃
B ∈ A

for all nonempty B ⊆ A such that |B| ≤ κ. An extended real-valued set function
µ : A → R is said to be κ-maxitive if and only if µ(

⋃
B) = supA∈B µ(A) for all

nonempty B ⊆ A such that |B| ≤ κ and
⋃
B ∈ A. Furthermore, µ is said to be

monotonic if and only if µ(A) ≤ µ(B) for all A,B ∈ A such that A ⊆ B.
Monotonicity is implied by finite maxitivity (i.e., 2-maxitivity), while count-

able maxitivity (i.e., ℵ0-maxitivity) was assumed by Shilkret (1971) in his def-
inition of maxitive measures. A set function µ : P(Ω) → R is κ-maxitive
for all cardinals κ if and only if there is a function f : Ω → R such that
µ(A) = supω∈A f(ω) for all nonempty A ⊆ Ω, and µ(∅) ≤ inf f . This kind
of maxitivity (called complete maxitivity by Shilkret, 1971) is the one usually
assumed in possibility theory, with f : Ω → [0, 1] and µ(∅) = 0 (see for instance
Zadeh, 1978).

Theorem 1. Let κ be a cardinal, and let µ : A → R be κ-maxitive. If A is
closed under κ-union, or A is a ring (i.e., closed under finite union and finite
intersection), then there is a κ-maxitive extension of µ to P(Ω).

Proof. The cases with κ ≤ 1 or A = ∅ are trivial, so assume κ > 1 and
A ̸= ∅. Consider first the case with A closed under κ-union, and define µ′ :
A 7→ infB∈A :A⊆B µ(B) on P(Ω), where inf ∅ = +∞. Since µ is monotonic, µ′

is a monotonic extension of µ. Therefore, in order to prove the κ-maxitivity of
µ′, it suffices to show µ′(

⋃
B) ≤ supA∈B µ′(A) for all nonempty B ⊆ P(Ω) such

that |B| ≤ κ and supA∈B µ′(A) < +∞. When B is such a set, for each A ∈ B
and each ε ∈ R>0 there is an Aε ∈ A such that A ⊆ Aε and µ(Aε) < µ′(A) + ε,
and thus

µ′
(⋃

B
)
≤ inf

ε∈R>0

µ

( ⋃
A∈B

Aε

)
≤ inf

ε∈R>0

sup
A∈B

(µ′(A) + ε) = sup
A∈B

µ′(A).

Now let A be a ring and let κ be infinite (the case with finite κ has already
been considered above). If B,B′ ⊆ A are two nonempty sets with cardinality at
most κ, and

⋃
B =

⋃
B′, then

sup
A∈B

µ(A) = sup
A∈B

µ

( ⋃
B∈B′

(A ∩B)

)
= sup

A∈B
sup
B∈B′

µ(A ∩B) = sup
B∈B′

µ(B).

Hence, the function µ̃ :
⋃
B 7→ supA∈B µ(A) on Ã = {

⋃
B : B ⊆ A, 0<|B| ≤ κ}

is a well-defined extension of µ. In order to complete the proof of the theorem,
it suffices to show that Ã is closed under κ-union and µ̃ is κ-maxitive, and this
follows easily from the fact that (assuming the axiom of choice) the product of
two infinite cardinals is their maximum.

3 Characterization of integrals

Since the focus of the present paper is on maxitive measures and integrals, The-
orem 1 implies that measurability restrictions are unnecessary, and A = P(Ω)
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can always be assumed. Moreover, in order to simplify the following results, only
nonnegative real-valued set functions µ : P(Ω) → R≥0 are considered, and with-
out real loss of generality µ(Ω) = 1 is imposed. A set function µ : P(Ω) → R
is said to be a capacity on Ω (in the most general sense) if and only if µ is
monotonic, µ(∅) = 0, and µ(Ω) = 1.

Let F be the set of all extended real-valued functions on Ω, and let F+ ⊂ F
be the subset of all nonnegative functions. The Shilkret integral of a function
f ∈ F+ with respect to a capacity µ on Ω is denoted by

∫
Sf dµ and is defined

as ∫ S

f dµ = sup
x∈R>0

xµ ({ω ∈ Ω : f(ω) > x}) .

Example 1. Let µ be the capacity on Ω = R such that µ(A) = 1 when supA =
+∞, and µ(A) = 1/2 otherwise, for all nonempty sets A ⊆ R. Then µ is finitely
maxitive, but not countably maxitive, and for all f ∈ F+,∫ S

f dµ = max

{
lim sup
x→+∞

f(x),
1

2
sup
x∈R

f(x)

}
.

The function in F taking the same values as f ∈ F on A ⊆ Ω and the value
x on Ω\A is denoted by Af,x. In particular, A1,0 is the usual indicator function
of A. Since

∫
SA1,0 dµ = µ(A) for all A ⊆ Ω, the Shilkret integral can be seen as

an extension of the capacity µ. The next lemma (which is a direct consequence
of the definitions) shows that this extension maintains maxitivity. When S ⊆ F
is a set of functions and κ is a cardinal, a functional F : S → R is said to be
κ-maxitive if and only if F (supf∈T f) = supf∈T F (f) for all nonempty T ⊆ S
such that |T | ≤ κ and supf∈T f ∈ S, where supf∈T f denotes the pointwise
supremum of the functions in T .

Lemma 1. Let µ be a capacity on Ω, and let κ be a cardinal. The functional
f 7→

∫
Sf dµ on F+ is κ-maxitive if and only if µ is κ-maxitive.

It is interesting to compare the properties of the Shilkret integral with the
properties of alternative definitions of integral. In particular, an important
integral with respect to nonadditive measures is the Choquet integral (see for
example Choquet, 1954; Denneberg, 1994). The Choquet integral of a function
f ∈ F+ with respect to a capacity µ on Ω is denoted by

∫
Cf dµ and is defined

as ∫ C

f dµ =

∫ +∞

0

µ ({ω ∈ Ω : f(ω) > x}) dx,

where the integral on the right-hand side is a well-defined improper Riemann
integral.

Example 2. Let µ be the capacity on Ω = R defined in Example 1. Then, for
all f ∈ F+, ∫ C

f dµ =
1

2

(
lim sup
x→+∞

f(x)

)
+

1

2

(
sup
x∈R

f(x)

)
.

The standard integral with respect to additive measures can also be gener-
alized as follows to the case of nonadditive measures. The standard integral of
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a function f ∈ F+ with respect to a capacity µ on Ω is denoted by
∫
f dµ and

is defined as ∫
f dµ =

∑
x∈f [Ω]

xµ ({ω ∈ Ω : f(ω) = x})

when f is a simple function (i.e., its image f [Ω] is a finite subset of R), while
otherwise it is defined as ∫

f dµ = sup
s∈Sf

∫
sdµ,

where Sf denotes the set of all simple functions s ∈ F+ such that s ≤ f holds
pointwise. This corresponds to the usual integral when µ is finitely additive
(see for example Bhaskara Rao and Bhaskara Rao, 1983), and to the Lebesgue
integral when µ is countably additive (see for instance Ash, 1972).

Example 3. Let µ be the capacity on Ω = R defined in Example 1. Then, in
particular, for all functions f ∈ F+ taking infinitely many values,∫

f dµ =
1

2

∑
x∈R

f(x).

Let U ⊂ F be the subset of all functions bounded above, and define U+ =
U ∩F+. The next theorem characterizes the above three integrals as functionals
on the set U+ of all bounded, nonnegative real-valued functions on Ω. The
following definitions are needed for this characterization. Two functions f, g ∈ F
are said to be comonotonic if and only if f(ω) > f(ω′) implies g(ω) ≥ g(ω′) for
all ω, ω′ ∈ Ω. When S ⊆ F is a set of functions, a functional F : S → R is said
to be finitely (comonotonic) additive if and only if F (f + g) = F (f) + F (g) for
all (comonotonic) f, g ∈ S such that f +g and F (f)+F (g) are well-defined and
f + g ∈ S. The functional F is said to be monotonic if and only if F (f) ≤ F (g)
for all f, g ∈ S such that f ≤ g holds pointwise. Furthermore, F is said to be
positively homogeneous if and only if F (α f) = αF (f) for all α ∈ R>0 and all
f ∈ S such that α f ∈ S.

Theorem 2. Let F : U+ → R≥0 be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω).

(i) F is finitely additive if and only if µ is a finitely additive capacity and
F : f 7→

∫
f dµ.

(ii) F is finitely comonotonic additive and monotonic if and only if µ is a
capacity and F : f 7→

∫
Cf dµ.

(iii) F is finitely maxitive and positively homogeneous if and only if µ is a
finitely maxitive capacity and F : f 7→

∫
Sf dµ.

Proof. See Bhaskara Rao and Bhaskara Rao (1983, Chapter 4) for the “if” part
of (i). The “only if” part can be proved as follows. Since F is finitely additive,
it is also monotonic, and µ is a finitely additive capacity. The finite additivity
of F implies also F (α f) = αF (f) for all α ∈ Q>0 and all f ∈ U+. The positive
homogeneity of F follows then from its monotonicity. Therefore, F (f) =

∫
f dµ

holds for all simple functions f ∈ U+. The result for all functions f ∈ U+
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follows from the monotonicity of F and the fact that for each ε ∈ R>0 there is
a simple function s ∈ U+ such that s ≤ f ≤ s+ ε holds pointwise.

The “if” part of (ii) is proved in Schmeidler (1986, Remark 4). For the “only
if” part, since F is finitely comonotonic additive and monotonic, µ is a capacity,
and the rest can be shown as in Schmeidler (1986, Proof of the Theorem).

The “if” part of (iii) is a direct consequence of the definitions (and Lemma 1).
The “only if” part can be proved as follows. Since F is finitely maxitive and
positively homogeneous, it is also monotonic, and µ is a finitely maxitive capac-
ity. Moreover, F (f) = maxx∈f [Ω] xµ ({ω ∈ Ω : f(ω) = x}) =

∫
Sf dµ holds for

all simple functions f ∈ U+. The result for all functions f ∈ U+ follows as in
the proof of (i).

Note that the functional F is monotonic and positively homogeneous in all
three cases of Theorem 2. Hence, the characterizing properties of the standard,
Choquet, and Shilkret integrals on bounded, nonnegative functions are finite ad-
ditivity, finite comonotonic additivity, and finite maxitivity, respectively. These
properties do not characterize the integrals on unbounded, nonnegative func-
tions, but their countable versions do, as shown in the next theorem. The
following definitions are needed for this characterization. When S ⊆ F is a set
of functions, a functional F : S → R is said to be countably (comonotonic)
additive if and only if F (

∑
n∈N fn) =

∑
n∈N F (fn) for all sequences (fn)n∈N of

(pairwise comonotonic) functions fn ∈ S such that
∑

n∈N fn and
∑

n∈N F (fn)
are well-defined and

∑
n∈N fn ∈ S. A capacity µ on Ω is said to be 0-continuous

if and only if µ(
⋃

n∈N An) = 0 for all nondecreasing sequences (An)n∈N of sets
An ⊂ Ω with µ(An) = 0.

Theorem 3. Let F : F+ → R≥0 be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω).

(i) F is countably additive if and only if µ is a countably additive capacity
and F : f 7→

∫
f dµ.

(ii) F is countably comonotonic additive and monotonic if and only if µ is a
0-continuous capacity and F : f 7→

∫
Cf dµ.

(iii) F is countably maxitive and positively homogeneous if and only if µ is a
countably maxitive capacity and F : f 7→

∫
Sf dµ.

Proof. See Ash (1972, Corollary 1.6.4) for the “if” part of (i). The “only if” part
can be proved as follows. Since F is countably additive, it is also monotonic and
finitely additive, and µ is a countably additive capacity. Thus, Theorem 2 (i)
implies F (f) =

∫
f dµ for all f ∈ U+. The result for all f ∈ F+ follows

from the fact that there is a sequence (fn)n∈N of functions fn ∈ U+ such that
f =

∑
n∈N fn, and therefore F is uniquely determined by µ.

The “if” part of (ii) can be proved as follows. The monotonicity of F is a
direct consequence of the definitions. In order to show that F is also count-
ably comonotonic additive, let (fn)n∈N be a sequence of pairwise comonotonic
functions fn ∈ F+, and define f =

∑
n∈N fn. Then

∫
Cf dµ ≥

∑
n∈N

∫
Cfn dµ

follows from the finite comonotonic additivity of F , which is proved for example
in Wakker (1989, Theorem 2) and Cattaneo (2007, Theorem 2.25). Assume thus∑

n∈N
∫
Cfn dµ < +∞, and define the set I = {ω ∈ Ω : f(ω) = +∞}, the values
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xn = supω∈Ω\I fn(ω), and the functions gn = fn ∧ xn and g =
∑

n∈N gn on Ω,
where ∧ denotes the pointwise minimum.

If µ(I) = 0, then
∫
Cfn dµ =

∫
Cgn dµ for all n ∈ N, and

∫
Cf dµ =

∫
Cg dµ,

because the functions fn are pairwise comonotonic, and therefore fn(ω) ≥ xn

and gn(ω) = xn for all n ∈ N and all ω ∈ I. Hence, in order to prove the “if”
part of (ii), it suffices to show µ(I) = 0 and

∫
Cg dµ =

∑
n∈N

∫
Cgn dµ.

In order to show µ(I) = 0 when I ̸= ∅, define for each ω ∈ I the set
Iω =

⋂
n∈N {ω′ ∈ I : fn(ω

′) ≥ fn(ω)}. Then µ(Iω) = 0 for all ω ∈ I, be-
cause

∑
n∈N

∫
C(Iω)fn(ω),0 dµ ≤

∑
n∈N

∫
Cfn dµ < +∞. Furthermore, since the

functions fn are pairwise comonotonic, the sets Iω are nested (i.e., Iω ⊆ Iω′

or Iω′ ⊆ Iω for all ω, ω′ ∈ I), and {ω′ ∈ I : fn(ω
′) > fn(ω)} ⊆ Iω for all

n ∈ N and all ω ∈ I. Hence, if there is an n ∈ N such that the function
fn does not take the value infω∈I fn(ω) in I, then I =

⋃
n∈N Iωn

for a se-
quence (ωn)n∈N of points ωn ∈ I such that limn→∞ fn(ωn) = infω∈I fn(ω).
Therefore, in this case µ(I) = 0 because µ is 0-continuous and the sets Iω are
nested. On the other hand, if for each n ∈ N there is a point ωn ∈ I such that
fn(ωn) = minω∈I fn(ω), then either I =

⋃
n∈N Iωn

, or there is a point ω ∈ I
such that fn(ω) = minω′∈I fn(ω

′) for all n ∈ N, and thus I = Iω. In both cases,
µ(I) = 0.

In order to show
∫
Cg dµ =

∑
n∈N

∫
Cgn dµ, it suffices to prove that there

is a sequence (un)n∈N of continuous, nondecreasing functions un : R≥0 → R≥0

with gn = un ◦ g and such that
∑

n∈N un is the identity function on R≥0.
The desired result then follows from Denneberg (1994, Proposition 4.1) and
Ash (1972, Corollary 1.6.4). The existence of the functions un can be proved
analogously to Denneberg (1994, Proposition 4.5), since the functions gn are
pairwise comonotonic, and g(ω) = +∞ is possible only if gn(ω) = xn for all
n ∈ N. This concludes the proof of the “if” part of (ii).

The “only if” part of (ii) can be proved as follows. Since F is countably
comonotonic additive and monotonic, it is also finitely comonotonic additive,
and µ is a capacity. In order to show that µ is 0-continuous, let (An)n∈N be an
nondecreasing sequence of sets An ⊂ Ω with µ(An) = 0. Then µ(

⋃
n∈N An) ≤∑

n∈N µ(An) = 0, because the functions (An)1,0 are pairwise comonotonic. Fur-
thermore, Theorem 2 (ii) implies F (f) =

∫
Cf dµ for all f ∈ U+. The result for

all f ∈ F+ follows from the fact that there is a sequence (fn)n∈N of pairwise
comonotonic functions fn ∈ U+ such that f =

∑
n∈N fn, and therefore F is

uniquely determined by µ.
The “if” part of (iii) is a direct consequence of the definitions (and Lemma 1).

The “only if” part follows from Theorem 2 (iii) and the fact that for each f ∈ F+

there is a sequence (fn)n∈N of functions fn ∈ U+ such that f = supn∈N fn, and
thus F is uniquely determined by µ.

The necessary and sufficient condition of 0-continuity of the capacity for
the countable comonotonic additivity of the Choquet integral seems to be a
new result, though related results were obtained by Wu and Zhou (2006). The
next corollary shows that the Choquet integral is a generalization to the case of
nonadditive measures of the standard integral with respect to additive measures,
while the Shilkret integral is an alternative definition of integral also in the case
of additive measures. A set function µ : P(Ω) → R is said to be binary if and
only if it takes only two values. Hence, in particular, a capacity is binary if and
only if it takes only the values 0 and 1.
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Corollary 1. Let µ be a capacity on Ω.

(i)
∫
f dµ =

∫
Cf dµ for all f ∈ F+ if and only if µ is finitely additive.

(ii)
∫
Cf dµ =

∫
Sf dµ for all f ∈ F+ if and only if µ is binary.

(iii)
∫
Sf dµ =

∫
f dµ for all f ∈ F+ if and only if µ is finitely additive and

binary.

Proof. The “if” part of (i) can be proved as follows. Theorem 2 (i) implies that
the functional f 7→

∫
f dµ on U+ is finitely additive, and thus also monotonic.

Hence, Theorem 2 (ii) implies
∫
f dµ =

∫
Cf dµ for all f ∈ U+. The result for

all f ∈ F+ follows from the fact that for both definitions of integral, the integral
of f is the limit of the one of f ∧ n as n ∈ N tends to infinity. The “if” part
of (ii) is a direct consequence of the definitions, while the “if” part of (iii) is
implied by the corresponding parts of (i) and (ii).

In order to prove the “only if” parts, let A,B ⊆ Ω be disjoint and x ∈ R>0,
and define fx = Ax+1, 0 + B1,0. Then

∫
fx dµ = µ(B) + (x + 1)µ(A), while∫

Cfx dµ = µ(A ∪ B) + xµ(A) and
∫
Sfx dµ = max {µ(A ∪B), (x+ 1)µ(A)}.

The limits of these integrals as x tends to 0 imply the finite additivity of µ
in (i) and (iii). The binarity of µ in (ii) and (iii) follows from the fact that
when B = Ω \ A, the function x 7→

∫
Sfx dµ is affine on R>0 if and only if

µ(A) ∈ {0, 1}.

4 Subadditivity

A particularly important result for nonadditive integrals is the characterization
of the nonadditive measures with respect to which they are at least subadditive
(see for example Denneberg, 1994, Chapter 6). When S ⊆ F is a set of functions,
a functional F : S → R is said to be finitely subadditive if and only if F (f+g) ≤
F (f)+F (g) for all f, g ∈ S such that f+g and F (f)+F (g) are well-defined and
f + g ∈ S. A set function µ : P(Ω) → R is said to be submodular if and only if
µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B) for all A,B ⊆ Ω. Hence, in particular, all
finitely additive capacities and all finitely maxitive capacities are submodular.

Theorem 4. Let µ be a capacity on Ω.

(i) The functional f 7→
∫
f dµ on F+ is finitely subadditive if and only if µ

is finitely additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is finitely subadditive if and only if µ

is submodular.

(iii) The functional f 7→
∫
Sf dµ on F+ is finitely subadditive if and only if µ

is finitely maxitive.

Proof. In order to prove the “if” part of (i), it suffices to show that if f, g ∈ F+

and s ∈ Sf+g, then
∫
sdµ ≤

∫
f dµ +

∫
g dµ. This inequality is implied by

Theorem 2 (i), since s ∧ f and s − s ∧ f are bounded, and s ∧ f ≤ f and
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s− s∧ f ≤ g hold pointwise. The “only if” part of (i) follows from the fact that
for all disjoint A,B ⊆ Ω,

2µ(A) + µ(B) =

∫
((A ∪B)1,0 +A1,0) dµ ≤ µ(A ∪B) + µ(A)

=

∫
(A1,0 +B1,0) dµ+ µ(A) ≤ 2µ(A) + µ(B).

See Denneberg (1994, Chapter 6) for the proof of (ii).
In order to prove the “if” part of (iii), it suffices to show that if f, g ∈ F+ and

x ∈ R>0, then xµ ({ω ∈ Ω : f(ω) + g(ω) > x}) ≤
∫
Sf dµ +

∫
Sg dµ. Following

Shilkret (1971, page 113), assume thus
∫
Sf dµ+

∫
Sg dµ < +∞, and note that

for all λ ∈ (0, 1),

xµ ({ω ∈ Ω : f(ω) + g(ω) > x})
≤ xµ ({ω ∈ Ω : f(ω) > λx} ∪ {ω ∈ Ω : g(ω) > (1− λ)x})

= max

{
xµ

({
ω ∈ Ω :

1

λ
f(ω) > x

})
, x µ

({
ω ∈ Ω :

1

1− λ
g(ω) > x

})}
≤ max

{
1

λ

∫ S

f dµ,
1

1− λ

∫ S

g dµ

}
.

The desired result is obtained by letting λ tend to 0 or 1 when
∫
Sf dµ = 0 or∫

Sg dµ = 0, respectively, and by setting

λ =

∫
Sf dµ∫

Sf dµ+
∫
Sg dµ

otherwise. The “only if” part of (iii) follows from the fact that for all disjoint
A,B ⊆ Ω and all λ ∈ (0, 1), if λµ(A ∪B) > max{µ(A), µ(B)}, then

µ(A ∪B) ≤
∫ S

(A1,0 +Bλ,0) dµ+

∫ S

B1−λ,0 dµ

= λµ(A ∪B) + (1− λ)µ(B) < µ(A ∪B).

Theorem 4 gives necessary and sufficient conditions on the capacities for
the finite subadditivity of the integrals. Countable subadditivity is implied by
finite subadditivity when the integrals satisfy a monotone convergence theorem.
When S ⊆ F is a set of functions, a functional F : S → R is said to be countably
subadditive if and only if F (

∑
n∈N fn) ≤

∑
n∈N F (fn) for all sequences (fn)n∈N

of functions fn ∈ S such that
∑

n∈N fn and
∑

n∈N F (fn) are well-defined and∑
n∈N fn ∈ S. The functional F is said to satisfy monotone convergence if and

only if it is monotonic and F (limn→∞ fn) = limn→∞ F (fn) for all pointwise
nondecreasing sequences (fn)n∈N of functions fn ∈ S such that limn→∞ fn ∈ S,
where limn→∞ fn denotes the pointwise limit of the sequence. Furthermore, a
monotonic set function µ : P(Ω) → R is said to be continuous from below if and
only if µ(

⋃
n∈N An) = limn→∞ µ(An) for all nondecreasing sequences (An)n∈N

of sets An ⊂ Ω.
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Lemma 2. Let µ be a capacity on Ω.

(i) The functional f 7→
∫
f dµ on F+ satisfies monotone convergence if and

only if µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ satisfies monotone convergence if and

only if µ is continuous from below.

(iii) The functional f 7→
∫
Sf dµ on F+ satisfies monotone convergence if and

only if µ is continuous from below.

Proof. The “if” part of (i) follows from Theorem 3 (i). See Denneberg (1994,
Theorem 8.1) for the “if” part of (ii). The “if” part of (iii) can be proved
analogously: for all pointwise nondecreasing sequences (fn)n∈N of functions
fn ∈ F+,∫ S(

lim
n→∞

fn

)
dµ = sup

x∈R>0

xµ

(⋃
n∈N

{ω ∈ Ω : fn(ω) > x}

)

= sup
x∈R>0

x sup
n∈N

µ ({ω ∈ Ω : fn(ω) > x}) = lim
n→∞

∫ S

fn dµ.

For the “only if” parts, the continuity from below of µ is a direct conse-
quence of the fact that all three integrals are extensions of µ (when sets are
identified with their indicator functions). In (i) µ is also finitely additive (and
thus countably additive), since µ(A ∪ B) = limλ↑1

∫
(Aλ,0 + B1,0) dµ for all

disjoint A,B ⊆ Ω.

Corollary 2. Let µ be a capacity on Ω.

(i) The functional f 7→
∫
f dµ on F+ is countably subadditive if and only if

µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is countably subadditive if µ is sub-

modular and continuous from below.

(iii) The functional f 7→
∫
Sf dµ on F+ is countably subadditive if µ is count-

ably maxitive.

Corollary 2 gives sufficient conditions on the capacities for the countable
subadditivity of the integrals. For the Choquet and Shilkret integrals these
conditions are not necessary, as shown in the next example. Necessary and
sufficient conditions on the capacities for the countable subadditivity of the
Choquet and Shilkret integrals are an open problem.

Example 4. The capacity µ on Ω = R defined in Example 1 is finitely maxi-
tive, but not countably maxitive (and thus submodular, but not continuous from
below). However, both functionals f 7→

∫
Cf dµ and f 7→

∫
Sf dµ on F+ are

countably subadditive. In order to prove this, it suffices to show

lim sup
x→+∞

∑
n∈N

fn(x) ≤
∑
n∈N

lim sup
x→+∞

fn(x)
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for all sequences (fn)n∈N of functions fn ∈ F+ such that
∑

n∈N supx∈R fn(x) <
+∞. This property follows from the fact that for each ε ∈ R>0 there is a finite
N ⊂ N such that

∑
n∈N\N supx∈R fn(x) ≤ ε, and therefore

lim sup
x→+∞

∑
n∈N

fn(x) ≤ lim sup
x→+∞

(
ε+

∑
n∈N

fn(x)

)
≤ ε+

∑
n∈N

lim sup
x→+∞

fn(x).

5 Law of iterated expectations

When an integral is interpreted as the evaluation (or expectation) of a function
with respect to a measure, it is important for the integral to satisfy a law of
iterated expectations. When F : F+ → R≥0 is a functional such that µ : A 7→
F (A1,0) on P(Ω) is a capacity, the conditional evaluation by F of a function
f ∈ F+ with respect to a partition C ⊆ P(Ω) of Ω is denoted by F (f | C) and is
defined as F (f | C) =

∑
C∈C CF (f |C),0, where F (f |C) = 0 when µ(C) = 0, and

F (f |C) =
F (Cf,0)

µ(C)

otherwise. When κ is a cardinal, F is said to be κ-decomposable if and only if
F (F (f | C)) = F (f) for all f ∈ F+ and all partitions C ⊆ P(Ω) of Ω such that
|C| ≤ κ.

Lemma 3. Let µ be a capacity on Ω, and let κ be a cardinal. The functional
f 7→

∫
Sf dµ on F+ is κ-decomposable if µ is κ-maxitive.

Proof. Lemma 1 implies that the functional F : f 7→
∫
Sf dµ on F+ is κ-

maxitive. Let f ∈ F+ be a function, and let C ⊆ P(Ω) be a partition of Ω such
that |C| ≤ κ. Then F (f |C)µ(C) = F (Cf,0) for all C ∈ C, and therefore∫ S

(∫ S

f dµ | C

)
dµ = sup

C∈C

∫ S

CF (f |C),0 dµ = sup
C∈C

∫ S

Cf,0 dµ =

∫ S

f dµ.

The next theorem gives necessary and sufficient conditions on the capaci-
ties for the finite decomposability (i.e., 2-decomposability) of the integrals. It
generalizes in particular a result of Yoo (1991), by showing that the Choquet
integral can satisfy a (finite) law of iterated expectations only if it corresponds
to the standard integral (when the capacity is finitely additive) or to the Shilkret
integral (when the capacity is finitely maxitive and binary).

Theorem 5. Let µ be a capacity on Ω with positive values for at least 3 pairwise
disjoint subsets of Ω.

(i) The functional f 7→
∫
f dµ on F+ is finitely decomposable if and only if

µ is finitely additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is finitely decomposable if and only if

µ is finitely additive or µ is finitely maxitive and binary.

(iii) The functional f 7→
∫
Sf dµ on F+ is finitely decomposable if and only if

µ is finitely maxitive.
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Proof. The “if” part of (i) can be proved analogously to Lemma 3, using the
finite additivity instead of the κ-maxitivity. The finite additivity of f 7→

∫
f dµ

on F+ follows from Theorem 4 (i) and the fact that for all f, g ∈ F+, if s ∈ Sf

and s′ ∈ Sg, then s + s′ ∈ Sf+g, and thus
∫
sdµ +

∫
s′ dµ ≤

∫
(f + g) dµ is

implied by Theorem 2 (i). The “if” part of (iii) is a special case of Lemma 3,
while the “if” part of (ii) is implied by the corresponding parts of (i) and (iii)
using Corollary 1 (i) and (ii), respectively.

For the “only if” parts, first note that for all A,B ∈ Ω, if µ(B) = 0, then
µ(A ∪ B) = µ(A), since the conditional evaluations of (A ∪ B)1,0 with respect
to the partition {A, Ω \ A} take the value 0 on Ω \ A. In particular, if µ is
binary, then it is finitely maxitive. Furthermore, for all A ⊆ Ω, at least one of
A and Ω \ A is the union of two disjoint subsets with positive capacity values,
because µ has positive values for at least 3 pairwise disjoint subsets of Ω, and
the previous result implies that for each of these 3 subsets, the intersections
with A and Ω \A cannot both have capacity value 0.

The “only if” part of (i) can be proved by contradiction as follows. Assume
that there are A,B ⊆ Ω disjoint and such that µ(A ∪B) ̸= µ(A) + µ(B). Then
µ(A) > 0 and µ(B) > 0, and thus∫ (∫

(A ∪B)1,0 dµ | {A, Ω \A}
)

dµ =

∫ (
A1,0 +

µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ

implies µ(B) = µ(Ω \ A) and µ(A ∪ B) = 1. Hence, µ(A) + µ(Ω \ A) < 1, and
at least one of A and Ω \ A, say A, is the union of two disjoint subsets with
positive capacity values: C and A \ C. Therefore,∫ (∫ (

µ(A)

µ(C)
C1,0 + (Ω \A)1,0

)
dµ | {A, Ω \A}

)
dµ =

∫
1 dµ

implies µ(A) = µ(C), and µ(A) = µ(A \ C) follows by symmetry. As shown
above, µ(A) ̸= µ(A) + µ(A \ C) implies µ(A) = 1, leading to a contradiction:

1 + 2µ(Ω \A) =

∫ (∫
A1,2 dµ | {C, Ω \ C}

)
dµ =

∫
C1, 1+2µ(Ω\A) dµ

= 2 + 2µ(Ω \A).

In order to prove the “only if” part of (ii), it suffices to show that if µ is not
finitely additive, then it is binary. Assume thus that µ is not finitely additive:
there are A,B ⊆ Ω disjoint and such that µ(A ∪ B) ̸= µ(A) + µ(B). Then
µ(A) > 0 and µ(B) > 0, and for all x ∈ R>0,

µ(A ∪B) + xµ(B) =

∫ C
(∫ C

((A ∪B)1,0 +Bx,0) dµ | {A, Ω \A}

)
dµ

=

∫ C(
A1,0 +

(1 + x)µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ.

This implies µ(B) = µ(Ω \A) and thus µ(A∪B) = 1, because µ(B) < µ(Ω \A)
would imply

µ(A ∪B) + xµ(B) = µ(A) +
(1 + x)µ(B)

µ(Ω \A)
(1− µ(A))
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for sufficiently small x ∈ R>0, which means µ(Ω\A) = 1−µ(A) and µ(A∪B) =
µ(A)+µ(B). Hence, µ(A)+µ(Ω \A) < 1. Now, for all C ⊆ Ω \A, if µ(C) > 0,
then

µ(A ∪ C) + µ(Ω \A)− µ(C)

=

∫ C
(∫ C(

A1,0 +
µ(Ω \A)

µ(C)
C1,0

)
dµ | {A, Ω \A}

)
dµ =

∫ C

1 dµ

implies µ(A∪C) > µ(A)+µ(C), and as shown above, from this follows µ(C) =
µ(Ω \ A). By symmetry, for all C ⊆ A, if µ(C) > 0, then µ(C) = µ(A). In
order to complete the proof of the “only if” part of (ii), it suffices to show
µ(A) = µ(Ω \ A) = 1, because µ(D) ∈ {0, 1} for all D ⊆ Ω then follows from
µ(D ∩A), µ(D \A) ∈ {0, 1}. In order to show µ(A) = µ(Ω \A) = 1, remember
that at least one of A and Ω\A, say A, is the union of two disjoint subsets with
positive capacity values: E and A \E. Hence, µ(A) = µ(E) = µ(A \E), and as
shown above, µ(A) ̸= µ(E) + µ(A \E) implies µ(A) = 1. Finally, µ(Ω \A) = 1
follows from

1 + µ(Ω \A) =

∫ C
(∫ C

(E1,0 + (Ω \A)2,0) dµ | {E, Ω \ E}

)
dµ

=

∫ C

E1, 2µ(Ω\A) dµ = max {1, 2µ(Ω \A)} .

The “only if” part of (iii) can be proved by contradiction as follows. Assume
that there are A,B ⊆ Ω disjoint and such that µ(A ∪ B) > max {µ(A), µ(B)}.
Then µ(A) > 0 and µ(B) > 0, and thus∫ S

(∫ S

(A ∪B)1,0 dµ | {A, Ω \A}

)
dµ

=

∫ S(
A1,0 +

µ(B)

µ(Ω \A)
(Ω \A)1,0

)
dµ = max

{
µ(B)

µ(Ω \A)
, µ(A)

}
implies µ(Ω \A) < 1 and µ(B) = µ(Ω \A)µ(A ∪B). Therefore,

max {µ(A ∪B), µ(Ω \A)}

=

∫ S
(∫ S(

A1,0 +
µ(Ω \A)

µ(B)
B1,0

)
dµ | {A, Ω \A}

)
dµ =

∫ S

1 dµ

implies µ(A ∪B) = 1 and µ(B) = µ(Ω \A). Hence, max {µ(A), µ(Ω \A)} < 1,
and at least one of A and Ω \ A, say A, is the union of two disjoint subsets
with positive capacity values: C and A \ C, with µ(Ω \ C) ≥ µ (Ω \ (A \ C)).
As shown above, if µ ((Ω \A) ∪ C) > max {µ(Ω \A), µ(C)}, then µ(Ω \ A) =
µ(Ω \ C), and thus µ (Ω \ (A \ C)) > µ(Ω \ C). Therefore, µ ((Ω \A) ∪ C) =
max {µ(Ω \A), µ(C)}, but this leads to a contradiction:

1 =

∫ S
(∫ S(

(A \ C)1,0 +
1

µ(C)
C1,0 +

1

µ(Ω \A)
(Ω \A)1,0

)
dµ | {A, Ω \A}

)

=

∫ S( 1

µ(A)
A1,0 +

1

µ(Ω \A)
(Ω \A)1,0

)
dµ > 1.
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Countable decomposability (i.e., ℵ0-decomposability) is implied by finite de-
composability when the integrals satisfy monotone convergence.

Corollary 3. Let µ be a capacity on Ω with positive values for at least 3 pairwise
disjoint subsets of Ω.

(i) The functional f 7→
∫
f dµ on F+ is countably decomposable if and only

if µ is countably additive.

(ii) The functional f 7→
∫
Cf dµ on F+ is countably decomposable if and only

if µ is countably additive or µ is countably maxitive and binary.

(iii) The functional f 7→
∫
Sf dµ on F+ is countably decomposable if µ is count-

ably maxitive.

Proof. The “if” parts can be proved as follows using Lemma 2 and Theorem 5.
Let F : F+ → R≥0 be a finitely decomposable functional satisfying monotone
convergence, let f ∈ F+ be a function, and let (Cn)n∈N be a nondecreasing
sequence of finite sets Cn ⊆ P(Ω) such that C =

⋃
n∈N Cn is a partition of Ω.

Then

F (F (f | C)) = lim
n→∞

F

(∑
C∈Cn

CF (f |C),0

)

= lim
n→∞

F

(
F

((⋃
Cn
)
f,0

| Cn ∪
{
Ω \

⋃
Cn
}))

= F

(
lim
n→∞

(⋃
Cn
)
f,0

)
= F (f).

The “only if” part of (i) can be proved by contradiction as follows. As-
sume that there is a sequence (An)n∈N of pairwise disjoint sets An ⊆ Ω such
that µ(

⋃
n∈N An) ̸=

∑
n∈N µ(An). Theorem 5 (i) implies that µ is finitely addi-

tive, and thus µ(
⋃

n∈N An) >
∑

n∈N µ(An). Therefore, infinitely many An have
positive capacity values, since∫ ∫ (⋃

n∈N
An

)
1,0

dµ | {An : n ∈ N}

 dµ =

∫  ⋃
n∈N :µ(An)>0

An


1,0

dµ.

Hence, µ takes infinitely many values, and Schervish et al. (1984, Theorem 3.1)
implies that there are a set A ⊆ Ω and a countable partition C of Ω such that
µ(A) > supC∈C

(∫
A1,0 dµ |C

)
, leading to a contradiction:

µ(A) =

∫ (∫
A1,0 dµ | C

)
dµ ≤

∫ (
sup
C∈C

(∫
A1,0 dµ |C

))
dµ < µ(A).

For the “only if” part of (ii), Theorem 5 (ii) implies that µ is finitely additive
or binary. If µ is finitely additive, then (i) and Corollary 1 (i) imply that µ is
also countably additive. If µ is binary, then it is also countably maxitive when
µ(
⋃

n∈N An) = 0 for all sequences (An)n∈N of pairwise disjoint sets An ⊂ Ω with
µ(An) = 0, and this follows from∫ C

∫ C
(⋃

n∈N
An

)
1,0

dµ | {An : n ∈ N}

 dµ =

∫ C

0 dµ.
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Corollary 3 gives sufficient conditions on the capacities for the countable
decomposability of the integrals. For the Shilkret integral the condition may
not be necessary, but the running example is not a counterexample.

Example 5. The capacity µ on Ω = R defined in Example 1 is neither countably
additive, nor countably maxitive, and the standard, Choquet, and Shilkret inte-
grals with respect to µ are not countably decomposable. More generally, if a func-
tional F : F+ → R≥0 is positively homogeneous and satisfies F (A1,0) = µ(A)
for all A ⊆ R, then it is not countably decomposable. In order to prove this, de-
fine for each n ∈ N the set Cn = {n+em−e : m ∈ N}. Since e is transcendental,
the sets Cn are pairwise disjoint, and thus

F

(
F

(
N1,0 | {Cn : n ∈ N} ∪

{
R \

⋃
n∈N

Cn

}))
= F

1

2

(⋃
n∈N

Cn

)
1,0


=

1

2
̸= 1 = F (N1,0).

6 Maxitive integrals of real functions

Theorem 2 (iii) characterizes the Shilkret integral as finitely maxitive, positively
homogeneous functional on all bounded, nonnegative functions. But the next
example shows that finite maxitivity and positive homogeneity are not sufficient
to characterize an integral on all bounded functions.

Example 6. Let Ω = N, and let F, F ′ : F → R be the functionals defined
by F (f) = f(1) when supn∈N f(n) < 0, and F (f) = max {f(1), 0} otherwise,
and by F ′(f) = f(1) when f(n) < 0 for all n ∈ N, and F ′(f) = max {f(1), 0}
otherwise, respectively, for all f ∈ F . Then F, F ′ are finitely maxitive and
positively homogeneous, and F (f) = F ′(f) for all simple functions f ∈ F , with
in particular F (x) = F ′(x) = x for all x ∈ R. However, F ̸= F ′, since for
instance F (f) = 0 ̸= −1 = F ′(f) when f : n 7→ −1/n.

The next theorem shows that not even countably maxitive, positively homo-
geneous functionals F : F → R with F (±1) = ±1 are uniquely determined by
the capacity µ : A 7→ F (A1,0) on P(Ω). A set function ν : P(Ω) → R is said to
be a penalty on Ω if and only if ν is monotonic, ν(∅) = −∞, and ν(Ω) = 0.

Theorem 6. Let F : F → R be a functional such that F (1) = 1 and F (−1) =
−1, and define µ : A 7→ F (A1,0) and ν : A 7→ F (A−1,−∞) + 1 on P(Ω), and
D = {D ⊂ Ω : F (D1,−∞) = −∞}. Then F is countably maxitive and positively
homogeneous if and only if µ is a countably maxitive capacity, ν is a countably
maxitive penalty, D is a σ-ideal such that µ(D) = 0 and ν(D) = −∞ for all
D ∈ D, and

F : f 7→
{

supx∈R>0
xµ ({ω ∈ Ω : f(ω) > x}) if {ω ∈ Ω : f(ω) > 0} /∈ D,

supx∈R<0
x (1− ν({ω ∈ Ω : f(ω) > x})) if {ω ∈ Ω : f(ω) > 0} ∈ D.

Proof. The “if” part can be proved as follows. Let T ⊆ F be a set of functions
such that 0 < |T | ≤ ℵ0. Since D is a σ-ideal,

{
ω ∈ Ω : supf∈T f(ω) > 0

}
∈ D

if and only if {ω ∈ Ω : f(ω) > 0} ∈ D for all f ∈ T . The countable maxitivity
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of F follows now from the countable maxitivity of µ and ν, while the positive
homogeneity of F is a direct consequence of the definitions.

For the “only if” part, since F is countably maxitive and positively ho-
mogeneous, it is also monotonic, µ is a countably maxitive capacity, ν is a
countably maxitive penalty, and D is a σ-ideal. Furthermore, if D ∈ D, then
µ(D) = F (D1,−∞ ∨ 0) = 0 and ν(D) ≤ F (D1,−∞) + 1 = −∞, where ∨ de-
notes the pointwise maximum. If A /∈ D, then F (A1,−∞) = µ(A), because
F (A1,−∞) ∈ R<0 would imply F (A2,−∞) = 2F (A1,−∞) < F (A1,−∞). The
desired result follows from the fact that for all f ∈ F ,

F (f) = sup
x∈Q̸=0

F
(
{ω ∈ Ω : f(ω) > x}x,−∞

)

= max

 supx∈Q>0
xF

(
{ω ∈ Ω : f(ω) > x}1,−∞

)
,

supx∈Q<0
(−x)F

(
{ω ∈ Ω : f(ω) > x}−1,−∞

)  ,

and thus F is uniquely determined by D, µ, ν.

The functionals F : F → R considered in Theorem 6 generalize the Shilkret
integral to functions taking also negative values, since F (f) =

∫
Sf dµ for all

f ∈ F+. The next lemma shows that such functionals can be finitely subadditive
only when µ is binary.

Lemma 4. Let µ be a capacity on Ω, and let F : F → R be a functional
such that F (−1) = −1 and F (f) =

∫
Sf dµ for all f ∈ F+. If F is finitely

subadditive, then µ is binary.

Proof. If µ is not binary, then there are an A ⊂ Ω with µ(A) /∈ {0, 1} and
an x ∈ R>0 with (1 + x)µ(A) < 1, and thus F is not subadditive, because
F (Ax,0) = xµ(A) > 1− 1 = F (Ax+1, 1) + F (−1).

In order to make the functionals F : F → R considered in Theorem 6
uniquely determined by the capacity µ : A 7→ F (A1,0) on P(Ω), their homogene-
ity can be assumed instead of positive homogeneity. This means additionally
assuming F (−f) = −F (f) for all f ∈ F . But the next lemma shows that this is
only possible when µ is binary. When S ⊆ F is a set of functions, a functional
F : S → R is said to be homogeneous if and only if F (α f) = αF (f) for all
α ∈ R ̸=0 and all f ∈ S such that α f ∈ S.

Lemma 5. Let F : F → R be a functional such that F (1) = 1, and define
µ : A 7→ F (A1,0) on P(Ω). If F is finitely maxitive and homogeneous, then µ is
a finitely additive, binary capacity.

Proof. Since F is finitely maxitive and homogeneous, it is also monotonic, and
µ is a finitely maxitive capacity. The desired result follows from the fact that
for all A ⊆ Ω, not only max {µ(A), µ(Ω \A)} = 1, but also

min {µ(A), µ(Ω \A)} = −max {F (−A1,0), F (−(Ω \A)1,0)} = 0.

Corollary 4. Let Ω be a nonempty set such that there is no σ-complete, non-
principal ultrafilter on Ω, and let F : F → R be a functional such that F (1) = 1.
Then F is countably maxitive and homogeneous if and only if there is a point
ω ∈ Ω such that F : f 7→ f(ω).
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Proof. The “if” part is a direct consequence of the definitions. The “only if”
part can be proved as follows. Theorem 6 and Lemma 5 imply that the set
function µ : A 7→ F (A1,0) on P(Ω) is a countably additive, binary capac-
ity, D = {D ⊂ Ω : F (D1,−∞) = −∞} ⊆ {D ⊂ Ω : µ(D) = 0}, and F (f) ≥ 0
for all f ∈ F+. Thus F (f) =

∫
Sf dµ for all f ∈ F+ follows from Theo-

rem 3 (iii). In particular, F (A−1,−∞) = −
∫
SA1,+∞ dµ = −1 when µ(A) = 1,

and F (A−1,−∞) = −∞ otherwise, for all A ⊆ Ω. Furthermore, if D ⊂ Ω with
µ(D) = 0, then D ∈ D, because min {F (D1,−∞), 0} = −

∫
SD0,+∞ dµ = −∞.

Hence, the set P(Ω) \D = {A ⊆ Ω : µ(A) = 1} is a σ-complete ultrafilter on Ω,
and thus there is a point ω ∈ Ω such that P(Ω) \ D = {A ⊆ Ω : ω ∈ A}, and
F : f 7→ f(ω) follows then from Theorem 6.

Theorem 6 implies that positive homogeneity is too weak a property to
determine a maxitive integral of real functions with respect to a capacity, while
Lemma 5 shows that homogeneity is too strong. Alternative strengthenings of
positive homogeneity are possible, but rather arbitrary. It is more interesting
to replace positive homogeneity by additive homogeneity. When S ⊆ F is a set
of functions, a functional F : S → R is said to be additively homogeneous if and
only if F (f + α) = F (f) + α for all α ∈ R and all f ∈ S such that f + α ∈ S.

The convex integral of a function f ∈ F with respect to a penalty ν on Ω is
denoted by

∫
Xf dν and is defined as∫ X

f dν = sup
x∈R

(x+ ν ({ω ∈ Ω : f(ω) > x})) .

The running example can be adapted as follows to the case of the convex integral.

Example 7. Let ν be the penalty on Ω = R such that ν(A) = 0 when supA =
+∞, and ν(A) = −1/2 otherwise, for all nonempty sets A ⊆ R. Then ν is
finitely maxitive, but not countably maxitive, and for all f ∈ F ,∫ X

f dν = max

{
lim sup
x→+∞

f(x), sup
x∈R

f(x)− 1

2

}
.

In particular, µ : A 7→
∫
XA1,0 dν on P(R) is the capacity defined in Example 1.

The next three corollaries correspond to Lemma 1, Theorem 2 (iii), and
Theorem 3 (iii), respectively, since

∫
Xf dν = ln

(∫
Sef deν

)
for all f ∈ F and

all penalties ν on Ω, where the logarithm and the exponential functions are
extended continuously to R≥0 and R, respectively.

Corollary 5. Let ν be a penalty on Ω, and let κ be a cardinal. The functional
f 7→

∫
Xf dν on F is κ-maxitive if and only if ν is κ-maxitive.

Corollary 6. Let F : U → R be a functional such that F (0) = 0, and de-
fine ν : A 7→ F (A0,−∞) on P(Ω). Then F is finitely maxitive and additively
homogeneous if and only if ν is a finitely maxitive penalty and F : f 7→

∫
Xf dν.

Corollary 7. Let F : F → R be a functional such that F (0) = 0, and define
ν : A 7→ F (A0,−∞) on P(Ω). Then F is countably maxitive and additively
homogeneous if and only if ν is a countably maxitive penalty and F : f 7→∫
Xf dν.
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Since
∫
XA0,−∞ dν = ν(A) for all A ⊆ Ω, the convex integral can be seen as

an extension of the penalty ν. Corollary 5 shows that this extension maintains
maxitivity, while Corollaries 6–7 characterize the convex integral as maxitive,
additively homogeneous functional. The value −∞ plays the same role in the
extension of the penalty ν by the convex integral as the value 0 does in the
extension of the capacity µ by the standard, Choquet, and Shilkret integrals.
The reason is that −∞ is the identity element of the maximum on R and the
absorbing element of the addition on R \ {+∞}, while 0 is the identity element
of the maximum or addition on R≥0 and the absorbing element of the multipli-
cation on R≥0 \ {+∞}. By contrast, the definition of a maxitive, homogeneous
integral is problematic, because the identity element of the maximum on R is
−∞, while the absorbing element of the multiplication on R is 0.

The next theorem characterizes the penalties with respect to which the con-
vex integral is convex, and is the reason for its name. When S ⊆ F is a set
of functions, a functional F : S → R is said to be finitely convex if and only
if F (λ f + (1− λ) g) ≤ λF (f) + (1 − λ)F (g) for all λ ∈ (0, 1) and all f, g ∈ S
such that f + g and F (f) + F (g) are well-defined and λ f + (1− λ) g ∈ S.

Theorem 7. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

finitely convex if and only if ν is finitely maxitive.

Proof. In order to prove the “if” part, it suffices to show that if λ ∈ (0, 1)
and f, g ∈ F are two functions such that f + g and

∫
Xf dν +

∫
Xg dν are

well-defined, and x ∈ R, then x + ν ({ω ∈ Ω : λ f(ω) + (1− λ) g(ω) > x}) ≤
λ
∫
Xf dν + (1 − λ)

∫
Xg dν. Assume thus

∫
Xf dν +

∫
Xg dν < +∞, and note

that for all α ∈ R,

x+ ν ({ω ∈ Ω : λ f(ω) + (1− λ) g(ω) > x})
≤ x+ ν ({ω ∈ Ω : f(ω) > x+ (1− λ)α} ∪ {ω ∈ Ω : g(ω) > x− λα})

= max

{
x+ ν ({ω ∈ Ω : f(ω)− (1− λ)α > x}) ,
x+ ν ({ω ∈ Ω : g(ω) + λα > x})

}
≤ max

{∫ X

f dν − (1− λ)α,

∫ X

g dν + λα

}
.

The desired result is obtained by letting α tend to −∞ or +∞ when
∫
Xf dν =

−∞ or
∫
Xg dν = −∞, respectively, and by setting α =

∫
Xf dν −

∫
Xg dν oth-

erwise.
The “only if” part follows from the fact that for all disjoint A,B ⊆ Ω and

all x ∈ R>0, if ν(A ∪B)− x > max{ν(A), ν(B)}, then

ν(A ∪B) ≤ 1

2

∫ X

(A0,−∞ ∨Bx,−∞) dν +
1

2

∫ X

(A0,−∞ ∨B−x,−∞) dν

=
1

2
ν(A ∪B) +

1

2
(ν(A ∪B)− x) < ν(A ∪B).

Theorem 7 gives a necessary and sufficient condition on the penalty for the
finite convexity of the integral. Countable convexity follows from finite convexity
when the integral satisfies a version of Fatou’s lemma, implied by monotone
convergence. When S ⊆ F is a set of functions, a functional F : S → R is said
to be countably convex if and only if F (

∑
n∈N λn fn) ≤

∑
n∈N λn F (fn) for all
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sequences (λn)n∈N of values λn ∈ (0, 1) such that
∑

n∈N λn = 1 and all sequences
(fn)n∈N of functions fn ∈ S such that

∑
n∈N λn fn and

∑
n∈N λn F (fn) are well-

defined and
∑

n∈N λn fn ∈ S. The next corollary corresponds to Lemma 2 (iii).

Corollary 8. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F

satisfies monotone convergence if and only if ν is continuous from below.

Corollary 9. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

countably convex if ν is countably maxitive.

Proof. Let (λn)n∈N be a sequence of values λn ∈ (0, 1) such that
∑

n∈N λn = 1,
let (fn)n∈N be a sequence of functions fn ∈ F such that

∑
n∈N λn fn and∑

n∈N λn

∫
Xfn dν are well-defined, and let (Nm)m∈N be a nondecreasing se-

quence of finite sets Nm ⊂ N such that
⋃

m∈N Nm = N. Corollary 8 and
Theorem 7 imply that the functional f 7→

∫
Xf dν on F satisfies monotone

convergence and is finitely convex, and thus∫ X
(∑

n∈N
λn fn

)
dν = lim

m→∞

∫ X
(

inf
k∈N : k≥m

∑
n∈Nk

λn fn

)
dν

≤ lim inf
m→∞

∫ X
( ∑

n∈Nm

λn fn

)
dν ≤

∑
n∈N

λn

∫ X

fn dν.

Corollary 9 gives a sufficient condition on the penalty for the countable
convexity of the integral. This condition is not necessary, as shown in the next
example. A necessary and sufficient condition on the penalty for the countable
convexity of the convex integral is an open problem.

Example 8. The penalty ν on Ω = R defined in Example 7 is finitely maxitive,
but not countably maxitive. However, the functional f 7→

∫
Xf dν on F is

countably convex, as can be proved analogously to Example 4.

For a positively homogeneous functional on F+ or F , convexity and subad-
ditivity are equivalent. But the next lemma shows that only with respect to
binary penalties (i.e., penalties taking only the values −∞ and 0) is the convex
integral positively homogeneous.

Lemma 6. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

positively homogeneous if and only if ν is binary.

Proof. The “if” part is a direct consequence of the definitions. The “only if”
part follows from the fact that for all A ⊆ Ω, if ν(A) > −∞, then ν(A) =
−
∫
XA−2 ν(A), 0 dν = −2

∫
XA−ν(A),0 dν = 0.

Corollary 10. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

finitely subadditive if and only if ν is finitely maxitive and binary.

Proof. If the functional f 7→
∫
Xf dν on F is finitely subadditive, then ν is

binary, since ν(A) = −
∫
XA−2 ν(A), 0 dν ≥ −2

∫
XA−ν(A),0 dν = 0 for all A ⊆ Ω

such that ν(A) > −∞. The desired result follows now from Theorem 7 and
Lemma 6.

Corollary 11. Let ν be a penalty on Ω. The functional f 7→
∫
Xf dν on F is

countably subadditive if and only if ν is countably maxitive and binary.
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Proof. The “if” part is implied by Corollary 9 and Lemma 6. For the “only
if” part, Corollary 10 implies that ν is finitely maxitive and binary. Hence, ν
is also countably maxitive when ν(

⋃
n∈N An) = −∞ for all sequences (An)n∈N

of pairwise disjoint sets An ⊂ Ω with ν(An) = −∞, and this follows from∫
X(
⋃

n∈N An)1,0 dν ≤
∑

n∈N
∫
X(An)1,0 dν = 0.

The convex integral, interpreted as the evaluation (or expectation) of func-
tions with respect to a penalty, satisfies a law of iterated expectations, if con-
ditional evaluations are defined accordingly. When F : F → R is a functional
such that ν : A 7→ F (A0,−∞) on P(Ω) is a penalty, the conditional evaluation
by F of a function f ∈ F with respect to a partition C ⊆ P(Ω) of Ω is denoted
by F (f | C) and is defined as F (f | C) =

∑
C∈C CF (f |C),0, where F (f |C) = −∞

when ν(C) = −∞, and F (f |C) = F (Cf,−∞) − ν(C) otherwise. When κ is a
cardinal, F is said to be κ-decomposable if and only if F (F (f | C)) = F (f) for
all f ∈ F and all partitions C ⊆ P(Ω) of Ω such that |C| ≤ κ. The next two
corollaries correspond to Lemma 3 and Theorem 5 (iii), respectively.

Corollary 12. Let ν be a penalty on Ω, and let κ be a cardinal. The functional
f 7→

∫
Xf dν on F is κ-decomposable if ν is κ-maxitive.

Corollary 13. Let ν be a penalty on Ω with finite values for at least 3 pairwise
disjoint subsets of Ω. The functional f 7→

∫
Xf dν on F is finitely decomposable

if and only if ν is finitely maxitive.
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