19 research outputs found

    Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate

    Get PDF
    We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere

    Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century

    Get PDF
    Ozone is expected to fully recover from the chlorofluorocarbon (CFC) era by the end of the 21st century. Furthermore, because of anthropogenic climate change, a cooler stratosphere decelerates ozone loss reactions and is projected to lead to a super recovery of ozone. We investigate the ozone distribution over the 21st century with four different future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). At the end of the 21st century, the equatorial upper stratosphere has roughly 0.5 to 1.0 ppm more ozone in the scenario with the highest greenhouse gas emissions compared to the conservative scenario. Polar ozone levels exceed those in the pre-CFC era in scenarios that have the highest greenhouse gas emissions. This is true in the Arctic stratosphere and the Antarctic lower stratosphere. The Antarctic upper stratosphere is an exception, where different scenarios all have similar levels of ozone during winter, which do not exceed pre-CFC levels. Our results show that this is due to excess nitrogen oxides (NOx) descending faster from above in the stronger scenarios of greenhouse gas emissions. NOx in the polar thermosphere and upper mesosphere is mainly produced by energetic electron precipitation (EEP) and partly by solar UV via transport from low latitudes. Our results indicate that the thermospheric/upper mesospheric NOx will be important factor for the future Antarctic ozone evolution and could potentially prevent a super recovery of ozone in the upper stratosphere

    Observations of solar wind related climate effects in the Northern Hemisphere winter

    No full text
    Abstract This thesis studies the long-term relation between the solar wind driven energetic particle forcing into the atmosphere and the tropospheric circulation in the Northern Hemisphere winter. The work covers the period of more than one hundred years since the turn of the 20th century to present. The thesis makes a statistical analysis of satellite measurements of precipitating energetic electrons, sunspot number data and geomagnetic activity, and compares them with temperature and pressure measurements made at the Earth's surface. Recent results, both observational and from chemistry climate models, have indicated significant effects in the Earth's middle atmosphere due to the energetic electrons precipitating from the magnetosphere. These effects include the formation of reactive hydrogen and nitrogen oxides in the high latitude mesosphere and the depletion of ozone caused by them. Ozone is a radiatively active and important gas, which affects the thermal structure and dynamics of the middle atmosphere. Accordingly, the depletion of ozone can intensify the large scale stratospheric circulation pattern called the polar vortex. Winter weather conditions on the surface have been shown to be dependent on the polar vortex strength. This thesis shows that there is a significant relation between the average fluxes of medium energy (ten to hundred keVs) precipitating electrons and surface temperatures in parts of the Northern Hemisphere in winter time. Temperatures are positively correlated with electron fluxes in North Eurasia and negatively correlated in Greenland during the period 1980-2010 which is covered by direct satellite observations of precipitating particles. This difference is especially notable when major sudden stratospheric warmings and the quasi-biennial oscillation (QBO), which both are known to affect the polar vortex strength, are taken into account. When extended to the late 19th century, the analysis shows that a similar temperature pattern is predominated during the declining phase of the sunspot cycle. The high speed solar wind streams and energetic particle precipitation typically maximize also at the declining phase of the solar cycle. This specific temperature pattern is related to the variability of the northern annular mode (NAM), which is the most significant circulation pattern in the Northern Hemisphere winter. Before the space era, geomagnetic activity measured by ground observations can be used as a proxy for energetic particle precipitation. Earlier studies have found a significant positive correlation between geomagnetic activity and NAM since the 1960s. We find that, when the QBO measured at 30 hPa height is in the easterly phase, a positive correlation is extended to the beginning of 1900s. We also show that high geomagnetic activity causes a stronger effect in the Northern Hemisphere winter than high sunspot activity, especially in the Atlantic and Eurasia. A comprehensive knowledge of the Earth's climate system and all its drivers is crucial for the future projection of climate. Solar variability effects have been estimated to produce only a small factor to the global climate change. However, there is increasing evidence, including the results presented in this thesis, that the different forms of solar variability can have a substantial effect to regional and seasonal climate variability. With this new evidence, the solar wind related particle effects in the atmosphere are now gaining increasing attention. These effects will soon be included in the next coupled model inter comparison project (CMIP6) as an additional solar related climate effect. This emphasizes the relevance of this thesis

    Will climate change impact polar NOx produced by energetic particle precipitation?

    Get PDF
    Energetic electron precipitation (EEP) is an important source of polar nitrogen oxides (NOx) in the upper atmosphere. During winter, mesospheric NOx has a long chemical lifetime and is transported to the stratosphere by the mean meridional circulation. Climate change is expected to accelerate this circulation and therefore increase polar mesospheric descent rates. We investigate the southern hemispheric polar NOx distribution during the 21st century under a variety of future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). We simulate stronger polar mesospheric descent in all future scenarios that increase the atmospheric radiative forcing. Polar NOx in the upper stratosphere is significantly enhanced in two future scenarios with the largest increase in radiative forcing. This indicates that the ozone depleting NOx cycle will become more important in the future, especially if stratospheric chlorine species decline. Thus, EEP‐related atmospheric effects may become more prominent in the future

    Effect of energetic electron precipitation on the northern polar vortex:explaining the QBO modulation via control of meridional circulation

    Get PDF
    Abstract Energetic electron precipitation (EEP) affects the high‐latitude middle atmosphere by producing NOₓ compounds that destroy ozone. Earlier studies have shown that in the wintertime polar stratosphere, increased EEP enhances the westerly wind surrounding the pole, the polar vortex. This EEP effect has been found to depend on the quasi‐biennial oscillation (QBO) of equatorial winds, but the mechanism behind this modulation has so far remained unresolved. In this study we examine the atmospheric effect of EEP and its modulation by QBO using the corrected electron flux measurements by NOAA/POES satellites and the ERA‐Interim reanalysis data of zonal wind, temperature, and ozone in winter months of 1980–2016. We verify the EEP‐related strengthening of the polar vortex, warming (cooling) in the upper (lower) stratosphere and a reduction of ozone mass mixing ratio in the polar stratosphere. We also verify that the EEP effect is stronger and more significant especially in late winter, when the QBO at 30 hPa is easterly. We find here that the difference in the EEP effect between the two QBO phases is largest using a roughly 6‐month lag for QBO. We demonstrate that ozone mass mixing ratio in the lower polar stratosphere, a proxy for the strength of Brewer‐Dobson circulation, is also larger during QBO‐E than QBO‐W, with the difference maximizing when the QBO is lagged by 6 months. Our findings indicate that the modulation of the Brewer‐Dobson circulation by QBO controls how the EEP affects the polar vortex

    Decadal variability in the Northern Hemisphere winter circulation:effects of different solar and terrestrial drivers

    No full text
    Abstract Northern Hemisphere winter circulation is affected by both solar and terrestrial forcings. El-Niño events and volcanic eruptions have been shown to produce a negative and a positive North Atlantic Oscillation (NAO) signature, respectively. Recent studies show a positive NAO signature related to both geomagnetic activity (proxy for solar wind driven particle precipitation) and sunspot activity (proxy for solar irradiance). Here the relative role of these four different drivers on the Northern Hemisphere wintertime circulation is studied using a statistical analysis of observational and reanalysis data during 1868–2014. The phase of the Quasi-Biennial Oscillation (QBO) is used to study driver signals in different stratospheric conditions. Moreover, the effects are separated for early/mid- and late winter. Our findings suggest a stratospheric mediation of the ENSO signal to the Atlantic side, which is delayed and modulated by the QBO unlike the signal in the Pacific side. The positive NAO by volcanic activity is preferentially obtained in the westerly QBO. We also find a substantial QBO modulation for geomagnetic activity and late winter sunspot activity, which favours a stratospheric pathway and the top-down mechanisms. However, signal in the North Pacific produced by early/mid-winter sunspot activity remain rather similar in different QBO phases and supports a direct forcing from the troposphere by the bottom-up sunspot mechanism

    Dependence of sudden stratospheric warmings on internal and external drivers

    Get PDF
    Abstract A sudden stratospheric warming (SSW) is a large‐scale disturbance of the wintertime stratosphere, which occurs especially in the Northern Hemisphere. Earlier studies have shown that SSW occurrence depends on atmospheric internal factors and on solar activity. We examine SSW occurrence in northern winters 1957/1958–2016/2017, considering several factors that may affect the SSW occurrence: Quasi‐Biennial Oscillation (QBO), El Niño–Southern Oscillation (ENSO), geomagnetic activity, and solar radiation. We confirm the well‐known result that SSWs occur more often in easterly QBO phase than in westerly phase. We show that this difference depends on how the QBO phase is determined. We find that the difference in SSW occurrence between easterly and westerly QBO winters strengthens (weakens) if geomagnetic activity or solar activity is low (high), or if the ENSO is in a cold (warm) phase. In easterly QBO phase significantly more SSWs occur during low geomagnetic activity than high activity

    Mesospheric Nitric Oxide Transport in WACCM

    Get PDF
    Energetic particle precipitation (EPP) causes ionization of the main constituents of the Earth's atmosphere which leads to the production of nitric oxide (NO) throughout the polar mesosphere and lower thermosphere (MLT). Due to the long lifetime of NO during winter, it can also be transported deeper into the atmosphere by the mesospheric residual circulation (the indirect EEP effect). This study investigates the mesospheric indirect NO response to EEP using Whole Atmosphere Community Climate Model (WACCM) version 6. In comparison to observations from the instrument Solar Occultation For Ice Experiment (SOFIE) on the AIM (Aeronomy of Ice in the Mesosphere) satellite, a wintertime underestimation is found in the modeled mesospheric NO amount. WACCM's temperature profile is found to be vertically shifted compared to observations by SOFIE and by The Sounding of the Atmosphere using Broadband Emission Radiometry instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite (SABER). The discrepancies in NO are therefore attributed to the model's ability to simulate the dynamics responsible for the indirect EEP effect. The drivers of this transport are investigated by sensitivity runs of WACCM's gravity wave forcing. Changing the amplitude of the non-orographic gravity waves and the Prandtl number improves the modeled vertical distribution of NO and temperature in the MLT region

    Comparing the effects of solar-related and terrestrial drivers on the northern polar vortex

    Get PDF
    Abstract Northern polar vortex experiences significant variability during Arctic winter. Solar activity contributes to this variability via solar irradiance and energetic particle precipitation. Recent studies have found that energetic electron precipitation (EEP) affects the polar vortex by forming ozone depleting NOx compounds. However, it is still unknown how the EEP effect compares to variabilities caused by, e.g., solar irradiance or terrestrial drivers. In this study we examine the effects of EEP, solar irradiance, El-Niño-Southern Oscillation (ENSO), volcanic aerosols and quasi-biennial oscillation (QBO) on the northern wintertime atmosphere. We use geomagnetic Ap-index to quantify EEP activity, sunspot numbers to quantify solar irradiance, Niño 3.4 index for ENSO and aerosol optical depth for the amount of volcanic aerosols. We use a new composite dataset including ERA-40 and ERA-Interim reanalysis of zonal wind and temperature and multilinear regression analysis to estimate atmospheric responses to the above mentioned explaining variables in winter months of 1957–2017. We confirm the earlier results showing that EEP and QBO strengthen the polar vortex. We find here that the EEP effect on polar vortex is stronger and more significant than the effects of the other drivers in almost all winter months in most conditions. During 1957–2017 the considered drivers together explain about 25–35% of polar vortex variability while the EEP effect alone explains about 10–20% of it. Thus, a major part of variability is not due to the linear effect by the studied explaining variables. The positive EEP effect is particularly strong if QBO-wind at 30 hPa has been easterly during the preceding summer, while for a westerly QBO the EEP effect is weaker and less significant

    Assessing North Atlantic winter climate response to geomagnetic activity and solar irradiance variability

    Get PDF
    Abstract Recent studies suggest a response in the North Atlantic winter circulation which lags by a couple of years with respect to sunspot maximum. This has been explained by two different top‐down mechanisms: a solar wind driven particle effect in the polar atmosphere during the declining phase of the solar cycle, and the re‐emergence and amplification of heat anomalies in the Atlantic Ocean produced by enhanced solar ultraviolet (UV). Here we study how December to February climate is affected by two solar‐related drivers: geomagnetic activity (proxy of particle precipitation) and sunspot activity (proxy of solar UV) during 1948–2017. We use reanalysis data of sea‐level pressure (SLP) and zonal wind (U) to show that both geomagnetic activity and sunspot activity independently and simultaneously produce atmospheric circulation responses in the North Atlantic whose evolutions clearly differ from each other. Geomagnetic activity produces a strengthening of the polar vortex and a negative poleward SLP gradient between mid‐ and high latitudes, resembling a positive NAO‐type circulation pattern during December to February. Solar UV produces a positive U anomaly in the low‐latitude stratosphere during December, which moves poleward and downward during the winter resulting in a negative poleward SLP gradient between mid‐ and high latitudes during February. We find the lagged sunspot activity responses in SLP to form zonal pressure patterns (wave‐train structure) resembling the Eurasian pattern. Geomagnetic activity responses remain essentially the same when we introduce the lag with respect to sunspot activity supporting its independency as a driving mechanism. Our results suggest that solar wind related particle precipitation and (lagged) solar UV mechanism provide independent, significant circulation signals in the North Atlantic winter
    corecore