40 research outputs found

    Incoherent interlayer electron hopping as a possible reason for enhanced magnetic quantum oscillations in the mixed state of a layered organic superconductor

    Get PDF
    We present a theory which is able to explain enhanced magnetic quantum-oscillation amplitudes in the superconducting state of a layered organic metal with incoherent electronic transport across the layers. The incoherence acts through the deformation of the layer-stacking factor which becomes complex and decreases the total scattering rate in the mixed state. This novel mechanism restores the coherence by establishing a long-range order across the layers and can compensate the usual decrease of the Dingle factor below the upper critical magnetic field caused by the intralayer scattering

    Slow oscillations of magnetoresistance in quasi-two-dimensional metals

    Full text link
    Slow oscillations of the interlayer magnetoresistance observed in the layered organic metal β\beta -(BEDT-TTF)2_2IBr2_2 are shown to originate from the slight warping of its Fermi surface rather than from independent small cyclotron orbits. Unlike the usual Shubnikov-de Haas effect, these oscillations are not affected by the temperature smearing of the Fermi distribution and can therefore become dominant at high enough temperatures. We suggest that the slow oscillations are a general feature of clean quasi-two-dimensional metals and discuss possible applications of the phenomenon.Comment: 11 pages, 3 figure

    Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal

    Full text link
    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal follow the LK theory. We can explain this behavior by small chemical-potential oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA signal corroborates the existence of an oscillating chemical potential

    De Haas-van Alphen Oscillations in the Quasi-Two-Dimensional Organic Conductor κ-(ET)2Cu(NCS)2: The Magnetic Breakdown Approach

    Get PDF
    We present both experimental data and an analytic theory for the de Haas–van Alphen ~dHvA! effect in the two-dimensional organic single-crystal conductor k -(ET)2Cu(NCS)2. We show that the magnetization oscillation pattern and the fast Fourier transform (FFT) spectrum of our measurements are well described theoretically within the coherent magnetic breakdown (MB) model for a two-dimensional Fermi surface consisting of two open sheets and closed pockets connected by magnetic breakdown centers. The spectrum of Landau quantized energy levels changes substantially due to the MB. Landau bands develop whose bandwidth and relative distance between them oscillate in inverse magnetic field. These oscillations explain the observed fine structure of the magnetization pattern at fields above the MB field with the occurrence of ‘‘forbidden’’ frequencies in the FFT spectrum

    On the de Haas - van Alphen oscillations in quasi-two-dimensional metals: effect of the Fermi surface curvature

    Full text link
    Here, we present the results of theoretical analysis of the de Haas-van Alphen oscillations in quasi-two-dimensional normal metals. We had been studying effects of the Fermi surface (FS) shape on these oscillations. It was shown that the effects could be revealed and well pronounced when the FS curvature becomes zero at cross-sections with extremal cross-sectional areas. In this case both shape and amplitude of the oscillations could be significantly changed. Also, we analyze the effect of the FS local geometry on the angular dependencies of the oscillation amplitudes when the magnetic field is tilted away from the FS symmetry axis by the angle θ.\theta. We show that a peak appears at θ0\theta \approx 0 whose height could be of the same order as the maximum at the Yamaji angle. This peak emerges when the FS includes zero curvature cross-sections of extremal areas. Such maximum was observed in experiments on the α(BETS)4TIHg(SeCN)4.\alpha-(BETS)_4TIHg(SeCN)_4. The obtained results could be applied to organic metals and other quasi-two-dimensional compounds.Comment: 9 pages, 4 figures, text added, references adde

    Theory of the Shubnikov-de Haas effect in quasi-two-dimensional metals

    Full text link
    The Shubnikov - de Haas effect in quasi-two-dimensional normal metals is studied. The interlayer conductivity is calculated using the Kubo formula. The electron scattering on short-range is considered in the self-consistent Born approximation. The result obtained differs from that derived from the Boltzmann transport equation. This difference is shown to be a general feature of conductivity in magnetic field. A detailed description of the two new qualitative effects -- the field-dependent phase shift of beats and of the slow oscillations of conductivity is provided. The results obtained are applicable to strongly anisotropic organic metals and to other quasi-two-dimensional compounds.Comment: 10 page

    Monotonic growth of interlayer magnetoresistance in strong magnetic field in very anisotropic layered metals

    Full text link
    It is shown, that the monotonic part of interlayer electronic conductivity strongly decreases in high magnetic field perpendicular to the conducting layers. We consider only the coherent interlayer tunnelling, and the obtained result strongly contradicts the standard theory. This effect appears in very anisotropic layered quasi-two-dimensional metals, when the interlayer transfer integral is less than the Landau level separation.Comment: 4 pages, no figure

    Theory of de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation in type-II superconductors are developed based on the Bogoliubov-de Gennes equations for vortex-lattice states. As the pair potential grows through the superconducting transition, each degenerate Landau level in the normal state splits into quasiparticle bands in the magnetic Brillouin zone. This brings Landau-level broadening, which in turn leads to the extra dHvA oscillation damping in the vortex state. We perform extensive numerical calculations for three-dimensional systems with various gap structures. It is thereby shown that (i) this Landau-level broadening is directly connected with the average gap at H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra dHvA oscillation attenuation is caused by the broadening around each extremal orbit. These results imply that the dHvA experiment can be a unique probe to detect band- and/or angle-dependent gap amplitudes. We derive an analytic expression for the extra damping based on the second-order perturbation with respect to the pair potential for the Luttinger-Ward thermodynamic potential. This formula reproduces all our numerical results excellently, and is used to estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn, and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the one through a specific-heat measurement, indicating presence of gap anisotropy in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure

    Magnetic Quantum Oscillations of the Longitudinal Conductivity σzz\sigma_{zz} in Quasi two-dimensional Metals

    Full text link
    We derive an analytical expression for the longitudinal magnetoconductivity σzz\sigma_{zz} in layered conductors in presence of a quantizing magnetic field perpendicular to the layers and for short-range in-plane impurity scattering in frame of the quantum transport theory. Our derivation points out quite unusual temperature and magnetic field dependences for Shubnikov-de Haas oscillations in the two-dimensional limit, i.e. ωc4πt\hbar \omega_{c} \gg 4 \pi t, where tt is the interlayer hopping integral for electrons, and ωc\omega_{c} the cyclotron frequency. In particular, when ωc4πt\hbar \omega_{c} \gg 4 \pi t and ωc2πΓμ\hbar \omega_{c} \geq 2 \pi \Gamma_{\mu} (here Γμ\Gamma_{\mu} is the value of the imaginary part of the impurity self-energy at the chemical potential μ\mu), a pseudo-gap centered on integer values of μ/ωc\mu/\hbar\omega_{c} appears in the zero-temperature magnetoconductivity function σzz(μ/ωc)\sigma_{zz}(\mu/\hbar\omega_{c}). At low temperatures, this high-field regime is characterized by a thermally activated behavior of the conductivity minima (when chemical potential μ\mu lies between Landau levels) in correspondence with the recent observation in the organic conductor β-(BEDT-TTF)2SF5CH2CF2SO3\beta''\text{-(BEDT-TTF)}_{2}\text{SF}_{5}\text{CH}_{2}\text{CF}_{2}\text{SO}_ {3}.Comment: 16 pages, 4 figures, to be published in Phys. Rev.
    corecore