448 research outputs found

    Break-down of the single-active-electron approximation for one-photon ionization of the B 1ÎŁu+^1\Sigma_u^+ state of H2_2 exposed to intense laser fields

    Full text link
    Ionization, excitation, and de-excitation to the ground state is studied theoretically for the first excited singlet state B 1ÎŁu+^1\Sigma_u^+ of H2_2 exposed to intense laser fields with photon energies in between about 3 eV and 13 eV. A parallel orientation of a linear polarized laser and the molecular axis is considered. Within the dipole and the fixed-nuclei approximations the time-dependent Schr\"odinger equation describing the electronic motion is solved in full dimensionality and compared to simpler models. A dramatic break-down of the single-active-electron approximation is found and explained to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure

    Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr

    Get PDF
    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes

    Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths

    Full text link
    We study the dynamics of the Potassium atom in the mid-infrared, high intensity, short laser pulse regime. We ascertain numerical convergence by comparing the results obtained by the direct expansion of the time-dependent Schroedinger equation onto B-Splines, to those obtained by the eigenbasis expansion method. We present ionization curves in the 12-, 13-, and 14-photon ionization range for Potassium. The ionization curve of a scaled system, namely Hydrogen starting from the 2s, is compared to the 12-photon results. In the 13-photon regime, a dynamic resonance is found and analyzed in some detail. The results for all wavelengths and intensities, including Hydrogen, display a clear plateau in the peak-heights of the low energy part of the Above Threshold Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for publication in Phys. Rev A. Improved figures, language and punctuation, and made minor corrections. We also added a comparison to the ADK theor

    Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir

    Get PDF
    We present a formalism that enables the study of the non-Markovian dynamics of a three-level ladder system in a single structured reservoir. The three-level system is strongly coupled to a bath of reservoir modes and two quantum excitations of the reservoir are expected. We show that the dynamics only depends on reservoir structure functions, which are products of the mode density with the coupling constant squared. This result may enable pseudomode theory to treat multiple excitations of a structured reservoir. The treatment uses Laplace transforms and an elimination of variables to obtain a formal solution. This can be evaluated numerically (with the help of a numerical inverse Laplace transform) and an example is given. We also compare this result with the case where the two transitions are coupled to two separate structured reservoirs (where the example case is also analytically solvable)

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    Quantum information processes in protein microtubules of brain neurons

    Get PDF
    We study biologically ‘orchestrated’ coherent quantum processes in collections of protein microtubules of brain neurons, which correlate with, and regulate, neuronal synaptic and membrane activity. In this situation the continuous Schrodinger evolution of each such process terminates in accordance with the specific Diosi-Penrose (DP) scheme of ‘objective reduction’ (‘OR’) of the quantum state. This orchestrated OR activity (‘Orch OR’) is taken to result in moments of conscious awareness and/or choice. We analyze Orch OR in light of advances and developments in quantum physics, computational neuroscience and quantum biology. Much attention is also devoted to the ‘beat frequencies’ of faster microtubule vibrations as a possible source of the observed electroencephalographic (‘EEG’) correlates of consciousness

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section
    • 

    corecore