775 research outputs found

    Dipolar ground state of planar spins on triangular lattices

    Full text link
    An infinite triangular lattice of classical dipolar spins is usually considered to have a ferromagnetic ground state. We examine the validity of this statement for finite lattices and in the limit of large lattices. We find that the ground state of rectangular arrays is strongly dependent on size and aspect ratio. Three results emerge that are significant for understanding the ground state properties: i) formation of domain walls is energetically favored for aspect ratios below a critical valu e; ii) the vortex state is always energetically favored in the thermodynamic limit of an infinite number of spins, but nevertheless such a configuration may not be observed even in very large lattices if the aspect ratio is large; iii) finite range approximations to actual dipole sums may not provide the correct ground sta te configuration because the ferromagnetic state is linearly unstable and the domain wall energy is negative for any finite range cutoff.Comment: Several short parts have been rewritten. Accepted for publication as a Rapid Communication in Phys. Rev.

    Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules

    Full text link
    We argue that to explain recent resonant tunneling experiments on crystals of Mn12_{12} and Fe8_8, particularly in the low-T limit, one must invoke dynamic nuclear spin and dipolar interactions. We show the low-TT, short-time relaxation will then have a t/τ\sqrt{t/\tau} form, where τ\tau depends on the nuclear T2T_2, on the tunneling matrix element Δ10\Delta_{10} between the two lowest levels, and on the initial distribution of internal fields in the sample, which depends very strongly on sample shape. The results are directly applicable to the Fe8Fe_8 system. We also give some results for the long-time relaxation.Comment: 4 pages, 3 PostScript figures, LaTe

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter

    Polytype control of spin qubits in silicon carbide

    Get PDF
    Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen vacancy centers in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials driven approach that could ultimately lead to "designer" spins with tailored properties. Here, we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including spins in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron-electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent spins, these interactions provide a route to dipole-coupled networks of separately addressable spins.Comment: 28 pages, 5 figures, and supplementary information and figure

    From multiplicative noise to directed percolation in wetting transitions

    Full text link
    A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes from a directed-percolation to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions, Mean-field arguments and the mapping on a yet simpler model provide some further insight on the overall scenario.Comment: 4 pages, 3 figure

    On the relationship between directed percolation and the synchronization transition in spatially extended systems

    Full text link
    We study the nature of the synchronization transition in spatially extended systems by discussing a simple stochastic model. An analytic argument is put forward showing that, in the limit of discontinuous processes, the transition belongs to the directed percolation (DP) universality class. The analysis is complemented by a detailed investigation of the dependence of the first passage time for the amplitude of the difference field on the adopted threshold. We find the existence of a critical threshold separating the regime controlled by linear mechanisms from that controlled by collective phenomena. As a result of this analysis we conclude that the synchronization transition belongs to the DP class also in continuous models. The conclusions are supported by numerical checks on coupled map lattices too

    Structure of characteristic Lyapunov vectors in spatiotemporal chaos

    Get PDF
    We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz `96 model exhibit the same features in quantitative and qualitative terms. Additionally we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work supports the claims about universality of our earlier results [I. G. Szendro et al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice.Comment: 9 page

    External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients

    Get PDF
    Objectives: The purpose of this study was to externally validate algorithms (previously developed and trained in two United States populations) aimed at early detection of severe oliguric AKI (stage 2/3 KDIGO) in intensive care units patients. Methods: The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the “AmsterdamUMC database”) admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients. Results: The deep learning model had an area under the ROC curve (AUC) of 0,907 (± 0,007SE) with a sensitivity and specificity of 80% and 89%, respectively, for identifying oliguric AKI episodes. Logistic regression models had an AUC of 0,877 (± 0,005SE) with a sensitivity and specificity of 80% and 81%, respectively. These results were comparable to those obtained in the two US populations upon which the algorithms were previously developed and trained. Conclusion: External validation on the European sample confirmed the accuracy of the algorithms, previously investigated in the US population. The models show high accuracy in both the European and the American databases even though the two cohorts differ in a range of demographic and clinical characteristics, further underlining the validity and the generalizability of the two analytical approaches. Graphical abstract: [Figure not available: see fulltext.

    A network model for field and quenched disorder effects in artificial spin ice

    Full text link
    We have performed a systematic study of the effects of field strength and quenched disorder on the driven dynamics of square artificial spin ice. We construct a network representation of the configurational phase space, where nodes represent the microscopic configurations and a directed link between node i and node j means that the field may induce a transition between the corresponding configurations. In this way, we are able to quantitatively describe how the field and the disorder affect the connectedness of states and the reversibility of dynamics. In particular, we have shown that for optimal field strengths, a substantial fraction of all states can be accessed using external driving fields, and this fraction is increased by disorder. We discuss how this relates to control and potential information storage applications for artificial spin ices
    • …
    corecore