776 research outputs found
Dipolar ground state of planar spins on triangular lattices
An infinite triangular lattice of classical dipolar spins is usually
considered to have a ferromagnetic ground state. We examine the validity of
this statement for finite lattices and in the limit of large lattices. We find
that the ground state of rectangular arrays is strongly dependent on size and
aspect ratio. Three results emerge that are significant for understanding the
ground state properties: i) formation of domain walls is energetically favored
for aspect ratios below a critical valu e; ii) the vortex state is always
energetically favored in the thermodynamic limit of an infinite number of
spins, but nevertheless such a configuration may not be observed even in very
large lattices if the aspect ratio is large; iii) finite range approximations
to actual dipole sums may not provide the correct ground sta te configuration
because the ferromagnetic state is linearly unstable and the domain wall energy
is negative for any finite range cutoff.Comment: Several short parts have been rewritten. Accepted for publication as
a Rapid Communication in Phys. Rev.
Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules
We argue that to explain recent resonant tunneling experiments on crystals of
Mn and Fe, particularly in the low-T limit, one must invoke dynamic
nuclear spin and dipolar interactions. We show the low-, short-time
relaxation will then have a form, where depends on the
nuclear , on the tunneling matrix element between the two
lowest levels, and on the initial distribution of internal fields in the
sample, which depends very strongly on sample shape. The results are directly
applicable to the system. We also give some results for the long-time
relaxation.Comment: 4 pages, 3 PostScript figures, LaTe
Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers
We demonstrate experimentally dynamic interface binding in a system
consisting of two coupled ferromagnetic layers. While domain walls in each
layer have different velocity-field responses, for two broad ranges of the
driving field, H, walls in the two layers are bound and move at a common
velocity. The bound states have their own velocity-field response and arise
when the isolated wall velocities in each layer are close, a condition which
always occurs as H->0. Several features of the bound states are reproduced
using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter
Polytype control of spin qubits in silicon carbide
Crystal defects can confine isolated electronic spins and are promising
candidates for solid-state quantum information. Alongside research focusing on
nitrogen vacancy centers in diamond, an alternative strategy seeks to identify
new spin systems with an expanded set of technological capabilities, a
materials driven approach that could ultimately lead to "designer" spins with
tailored properties. Here, we show that the 4H, 6H and 3C polytypes of SiC all
host coherent and optically addressable defect spin states, including spins in
all three with room-temperature quantum coherence. The prevalence of this spin
coherence shows that crystal polymorphism can be a degree of freedom for
engineering spin qubits. Long spin coherence times allow us to use double
electron-electron resonance to measure magnetic dipole interactions between
spin ensembles in inequivalent lattice sites of the same crystal. Together with
the distinct optical and spin transition energies of such inequivalent spins,
these interactions provide a route to dipole-coupled networks of separately
addressable spins.Comment: 28 pages, 5 figures, and supplementary information and figure
From multiplicative noise to directed percolation in wetting transitions
A simple one-dimensional microscopic model of the depinning transition of an
interface from an attractive hard wall is introduced and investigated. Upon
varying a control parameter, the critical behaviour observed along the
transition line changes from a directed-percolation to a multiplicative-noise
type. Numerical simulations allow for a quantitative study of the multicritical
point separating the two regions, Mean-field arguments and the mapping on a yet
simpler model provide some further insight on the overall scenario.Comment: 4 pages, 3 figure
On the relationship between directed percolation and the synchronization transition in spatially extended systems
We study the nature of the synchronization transition in spatially extended
systems by discussing a simple stochastic model. An analytic argument is put
forward showing that, in the limit of discontinuous processes, the transition
belongs to the directed percolation (DP) universality class. The analysis is
complemented by a detailed investigation of the dependence of the first passage
time for the amplitude of the difference field on the adopted threshold. We
find the existence of a critical threshold separating the regime controlled by
linear mechanisms from that controlled by collective phenomena. As a result of
this analysis we conclude that the synchronization transition belongs to the DP
class also in continuous models. The conclusions are supported by numerical
checks on coupled map lattices too
Structure of characteristic Lyapunov vectors in spatiotemporal chaos
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov
exponents in systems with spatiotemporal chaos. We focus on characteristic LVs
and compare the results with backward LVs obtained via successive Gram-Schmidt
orthonormalizations. Systems of a very different nature such as coupled-map
lattices and the (continuous-time) Lorenz `96 model exhibit the same features
in quantitative and qualitative terms. Additionally we propose a minimal
stochastic model that reproduces the results for chaotic systems. Our work
supports the claims about universality of our earlier results [I. G. Szendro et
al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice.Comment: 9 page
External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients
Objectives: The purpose of this study was to externally validate algorithms (previously developed and trained in two United States populations) aimed at early detection of severe oliguric AKI (stage 2/3 KDIGO) in intensive care units patients. Methods: The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the “AmsterdamUMC database”) admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients. Results: The deep learning model had an area under the ROC curve (AUC) of 0,907 (± 0,007SE) with a sensitivity and specificity of 80% and 89%, respectively, for identifying oliguric AKI episodes. Logistic regression models had an AUC of 0,877 (± 0,005SE) with a sensitivity and specificity of 80% and 81%, respectively. These results were comparable to those obtained in the two US populations upon which the algorithms were previously developed and trained. Conclusion: External validation on the European sample confirmed the accuracy of the algorithms, previously investigated in the US population. The models show high accuracy in both the European and the American databases even though the two cohorts differ in a range of demographic and clinical characteristics, further underlining the validity and the generalizability of the two analytical approaches. Graphical abstract: [Figure not available: see fulltext.
A network model for field and quenched disorder effects in artificial spin ice
We have performed a systematic study of the effects of field strength and
quenched disorder on the driven dynamics of square artificial spin ice. We
construct a network representation of the configurational phase space, where
nodes represent the microscopic configurations and a directed link between node
i and node j means that the field may induce a transition between the
corresponding configurations. In this way, we are able to quantitatively
describe how the field and the disorder affect the connectedness of states and
the reversibility of dynamics. In particular, we have shown that for optimal
field strengths, a substantial fraction of all states can be accessed using
external driving fields, and this fraction is increased by disorder. We discuss
how this relates to control and potential information storage applications for
artificial spin ices
- …