117 research outputs found

    Mutual influence of selenium nanoparticles and FGF2-STAB® on biocompatible properties of collagen/chitosan 3D scaffolds : in vitro and ex ovo evaluation

    Get PDF
    In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection

    An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes

    Get PDF
    There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct

    Effects of Terminal Dimethylation and Metal Coordination of Proline-2-formylpyridine Thiosemicarbazone Hybrids on Lipophilicity, Antiproliferative Activity, and hR2 RNR Inhibition

    Full text link

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/

    Unwinding of the third strand of a DNA triple helix, a novel activity of the SV40 large T-antigen helicase.

    No full text
    We present experiments indicating that the SV40 large T-antigen (T-ag) helicase is capable of unwinding the third strand of DNA triple helices. Intermolecular d(TC)(20)d(GA)(20)d(TC)(20) triplexes were generated by annealing, at pH 5.5, a linearized double-stranded plasmid containing a d(TC)(27).d(GA)27 tract with a (32)P-labeled oligonucleotide consisting of a d(TC)(20) tract flanked by a sequence of 15 nt at the 3'-end. The triplexes remained stable at pH 7.2, as determined by agarose gel electrophoresis and dimethyl sulfate footprinting. Incubation with the T-ag helicase caused unwinding of the d(TC)(20) tract and consequent release of the oligonucleotide, while the plasmid molecules remained double-stranded. ATP was required for this reaction and could not be replaced by the non-hydrolyzable ATP analog AMP-PNP. T-ag did not unwind similar triplexes formed with oligonucleotides containing a d(TC)(20) tract and a 5' flanking sequence or no flanking sequence. These data indicate that unwinding of DNA triplexes by the T-ag helicase must be preceded by binding of the helicase to a single-stranded 3' flanking sequence, then the enzyme migrates in a 3'--> 5' direction, using energy provided by ATP hydrolysis, and causes release of the third strand. Unwinding of DNA triplexes by helicases may be required for processes such as DNA replication, transcription, recombination and repair

    Formation of DNA triple helices inhibits DNA unwinding by the SV40 large T-antigen helicase.

    No full text
    Previous studies have indicated that d(TC)n.d(GA)n microsatellites may serve as arrest signals for mammalian DNA replication through the ability of such sequences to form DNA triple helices and thereby inhibit replication enzymes. To further test this hypothesis, we examined the ability of d(TC)i.d(GA)i.d(TC)i triplexes to inhibit DNA unwinding in vitro by a model eukaryotic DNA helicase, the SV40 large T-antigen. DNA substrates that were able to form triplexes, and non-triplex-forming control substrates, were tested. We found that the presence of DNA triplexes, as assayed by endonuclease S1 and osmium tetroxide footprinting, significantly inhibited DNA unwinding by T-antigen. Strong inhibition was observed not only at acidic pH values, in which the triplexes were most stable, but also at physiological pH values in the range 6.9-7.2. Little or no inhibition was detected at pH 8.7. Based on these results, and on previous studies of DNA polymerases, we suggest that DNA triplexes may form in vivo and cause replication arrest through a dual inhibition of duplex unwinding by DNA helicases and of nascent strand synthesis by DNA polymerases. DNA triplexes also have the potential to inhibit recombination and repair processes in which helicases and polymerases are involved

    Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    No full text
    Amitava Moulick,1,2 Vedran Milosavljevic,1,2 Jana Vlachova,1,2 Robert Podgajny,3 David Hynek,1,2 Pavel Kopel,1,2 Vojtech Adam1,2 1Department of Chemistry and Biochemistry, Mendel University, 2Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic; 3Faculty of Chemistry, Jagiellonian University, Krakow, Poland Abstract: CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments. Keywords: nanoparticles, nucleobases, biosensor, fluorescence, mutatio
    corecore