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Mutual influence of selenium nanoparticles 
and FGF2-STAB® on biocompatible properties 
of collagen/chitosan 3D scaffolds: in vitro and ex 
ovo evaluation
Johana Muchová1, Vanessa Hearnden2, Lenka Michlovská1, Lucie Vištejnová3, Anna Zavaďáková3, 
Kristýna Šmerková1,4, Silvia Kočiová4, Vojtěch Adam1,4, Pavel Kopel1,5 and Lucy Vojtová1*  

Abstract 

In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on 
the nanoparticle surface may influence both the nanoparticles’ and proteins’ overall bio-reactivity. Nevertheless, our 
knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocom-
patibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermo-
stable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide 
antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human 
dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an 
antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentra-
tion (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were 
monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value 
was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF met-
abolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds 
were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to 
antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the anti-
bacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked 
collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be 
used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis 
replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicro-
bial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.
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Background

Hydrogels have become increasingly studied as matrices 

for  tissue engineering [25]. Naturally derived hydrogel-

forming polymers have frequently been used in  tissue 

engineering applications because they are either com-

ponents of,  or have macromolecular properties, simi-

lar to the  natural extracellular matrix (ECM) [10]. The 
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disadvantage of  natural material hydrogels is its poor 

antimicrobial activity, making it a good substrate for bac-

terial growth and leading to severe infections and inflam-

mation [16]. This characteristic has led to the need to 

modify natural material hydrogels to incorporate anti-

bacterial properties  to prevent these undesirable side 

reactions.

Nanomaterials have been shown to be complemen-

tary to antibiotics as they have antimicrobial properties 

which are highly promising as  they can  combat multid-

rug-resistant mutants and biofilms [6, 32, 56]. Metal and 

metal oxide nanoparticles, well known for  their highly 

potent antibacterial effects [27] include silver (Ag), 

iron  oxide  (Fe3O4), titanium oxide  (TiO2), copper oxide 

(CuO), and zinc oxide (ZnO).

Selenium nanoparticles (SeNPs) also possess antibac-

terial, antiviral, antioxidant, and anticancer properties, 

suggesting they could be suitable as therapeutic candi-

dates to combat infectious diseases [26, 45, 48, 51]. Sele-

nium (Se) is a trace element naturally found in the body 

in contrast to other nanoparticle materials such as  Ag, 

Cu, or  TiO2. It is a constituent of  selenoproteins, which 

are important for  antioxidant defence systems, thyroid 

hormone metabolism, and redox control of  cell reac-

tions [5, 31]. The amount of Se in the body ranges from 

10 to 20  mg in  adults and the  recommended daily die-

tary allowance is 55  μg per day with an  upper tolerable 

limit of 400 μg [28]. This supports the suggestion that Se 

is a unique material with strong potential in biomedical 

applications.

Studies have demonstrated that  elemental selenium 

nanoparticles have antibacterial effects against gram-

positive bacteria  Staphylococcus aureus [32, 34, 45, 49], 

Methicillin-Resistant Staphylococcus aureus (MRSA) [15, 

36] and gram-negative bacteria (Escherichia coli [36, 52], 

Pseudomonas aeruginosa  [4, 17], Proteus mirabilis  [38], 

Klebsiella pneumoniae, Acinetobacter baumannii  [17]). 

Moreover, SeNPs are also effective against other microor-

ganisms such as yeast (Candida albicans [12]) and fungi 

(Trichophyton rubrum [54]).

In more detail, Tran  & Webster [45] reported 

that  S. aureus bacteria  growth was  inhibited by  SeNPs 

of 40–60 nm in the concentration range 7.8–31 μg/ml and 

the SeNPs killed approximately 40% of S. aureus bacteria, 

a pathogen which is often a cause of infection in vascular 

grafts [45]. Antimicrobial activity of SeNPs was also con-

firmed in the work of Hariharan et al. [13], Chudobova et 

al. [19] and Cihalova et  al. [6], where the  concentration 

of SeNPs 300 μM (23.7 μg/ml) and 50–100 nm in diam-

eter caused total S. aureus growth inhibition [6, 13, 19]. 

Another study of selenium nanoparticles showed strong 

growth inhibition against S. aureus at a concentration as 

low as 1 μg/ml [44].

The antimicrobial activity of selenium nanoparti-

cles is mainly due to the production of reactive oxygen 

species (known as ROS) leading to disruption of the 

phospholipid bilayer [11, 29]. In addition to the  high 

antibacterial activity of  SeNPs, they can also  be easily 

prepared for use in biomedical applications [34].

As for Se nanoparticles, there are some seemingly 

contradictory reports regarding the potential toxicity of 

Se [15, 42] and the biocompatibility of Se, as an anti-

oxidant nanomaterial [1, 23]. Concerning another stud-

ies, elemental Se is considered the least toxic form of Se 

[39, 55], therefore SeNPs could have significant poten-

tial to be used as an antimicrobial agent with low tox-

icity [40]. However, the antibacterial effects of  SeNPs 

are not fully understood and their potential toxicity 

towards human  tissues has been further investigated 

[49, 53]. Tran et al. [44] aimed to evaluate the cytotox-

icity of Se nanoparticles and found that SeNPs showed 

low toxicity toward fibroblasts which remained more 

than 70% viable at Se concentrations as high as 128 μg/

ml. The nanoparticles also exhibited very low haemol-

ysis with only 18% of maximal lysis observed at a Se 

concentration of 128 μg/ml [44]. Another potential lim-

itation affecting the clinical application of metal/metal-

loid nanoparticles is the ability of some nanostructured 

materials to stimulate processes that  trigger unwanted 

side-effects such as  hypersensitivity reactions, auto-

immune diseases and inflammatory responses [7, 18]. 

SeNPs have been used in many treatments of disease 

conditions including cancer,  diabetes,  inflammatory 

disorders,  liver fibrosis, and drug induced toxicities [2, 

22].

This study aims to extend our previous work on col-

lagen-based scaffolds modified with chitosan [3]  and 

enriched with thermostable fibroblast growth factor  2 

(FGF2-STAB®) [9]. Biodegradable collagen/chitosan/

FGF2-STAB® scaffolds revealed promising results in cell 

culture experiments and have displayed high suitability 

and biocompatibility to be used as a transferable scaf-

fold for tissue reconstruction. Firstly, this work aims to 

study the concentrations of FGF2-STAB® used for scaf-

fold preparation and its impact on fibroblasts’ meta-

bolic activity and angiogenesis. Secondly, this work aims 

to determine the antibacterial properties of scaffolds 

enriched with SeNPs to study their potential for biomedi-

cal and clinical applications in the fields of tissue engi-

neering and regenerative medicine. The combination of 

FGF2-STAB® and SeNPs was also studied in vitro to test 

both metabolic activity and antimicrobial activity, which 

is crucial information for the proper functioning of the 

scaffold.

The final aim of this study is to develop a complex 

tissue replacement that is based on naturally derived 
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materials, possesses antibacterial properties, and has the 

ability to accelerate wound healing.

Methods

Materials and chemicals

Bovine type I collagen, 8% aqueous solution (Collado, 

Czech Republic), low viscosity Chitosan from crab shells, 

N-(3-Dimethylaminopropyl)-N´-ethylcarbodiimide 

hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

(all from Sigma-Aldrich, Germany) were used as received 

without further purification. Hyperstable purified FGF2-

STAB® growth factor (having thermal stability 20 days at 

37 °C was purchased from Enantis, Czech Republic) with 

concentration 2 µg/ml was used as received.

Preparation of samples

Selenium nanoparticles preparation

SeNPs were synthesized according to the procedure pub-

lished in our previous study [6, 14]. Complex of selenium 

nanoparticles stabilized with  chitosan were prepared by 

a  reduction of   Na2SeO3 with  mercaptopropionic acid 

in  the presence of chitosan. High purity chemicals were 

used and nanoparticles were purified by dialysis. Size 

of the nanoparticles evaluated by ZetaSizer (NANO-ZS, 

Malvern Instruments) differs from 55 to 500 nm with the 

most abundant diameter between 100 and 200  nm (see 

SeNPs morphology in Fig. 10h). The content of selenium 

in SeNPs was checked by atomic absorption spectrom-

eter 280Z (Agilent Technologies, Santa Clara, CA, USA) 

with electrothermal atomization and selenium ultrasensi-

tive hollow cathode lamp after microwave digestion. The 

spectrometer operated at 196.0  nm resonance line with 

spectral bandwidth of 1.0 nm. The determined Se content 

was 663 ± 14 ppm.

Collagen/Chitosan sponges

Collagen/Chitosan sponges were prepared by freeze-

drying from 1% polymer aqueous solution and followed 

by cross-linking with the mixture of EDC/NHS accord-

ing to our previous work [41]. Briefly, 0.5 wt % collagen 

mixtures were prepared from lyophilized 100% collagen 

in ultrapure water  type II (Millipore filtration system 

according to ISO 3696). Chitosan was used as an addi-

tive in the ratio of 1:1 (wt/wt). The mixtures were 

homogenized and freeze-dried. Samples were primary 

freeze-dried in Martin Christ Epsilon 2-10D lyophilizator 

at − 35 °C under 1 mBar for 15 h followed by a secondary 

drying process at 25  °C under 0.01  mBar until decreas-

ing Δp up to 10%. Samples were additionally cross-linked 

with known carbodiimide system (EDC/NHS in molar 

ratio 2/1) and after  removal of  byproducts followed by 

freeze-drying again.

Collagen/Chitosan sponges enriched by FGF2‑STAB® 

and SeNPs

Scaffold enrichment with FGF2-STAB® water solu-

tion and/or SeNPs was performed after lyophilization 

of biopolymer mixture and cross-linking process. FGF2-

STAB® and/or SeNPs at certain concentrations  were 

poured onto the cross-linked sponge, left for 1 h shaking 

at 25 °C and re-lyophilized again (Fig. 1).

Normal human dermal fibroblasts isolation and culture

Normal human dermal fibroblasts (NHDF) were isolated 

from skin residues after plastic surgery interventions 

after patients’ informed consent by digestion-migration 

method, or from human skin which was collected as 

waste tissue from routine surgery. The skin samples were 

removed during cosmetic plastic surgery at the Depart-

ment of Plastic Surgery of the University Hospital in 

Pilsen (Czech Republic), under informed agreement of 

the donors and after approval by the ethical committee 

of the University Hospital in Pilsen (Pilsen, Czech Repub-

lic). The guidelines specified within the Declaration of 

Helsinki were followed. For experiments conducted in 

the UK written informed consent was collected from 

donors according to a protocol approved by the UK’s 

National Health Service (NHS) research ethics commit-

tee (ref: 15/YH/0177).

Immediately after skin biopsy, samples were immersed 

into physiological solution and transported into the cell 

culture lab for immediate isolation. Samples were washed 

homogenization

8000 rpm 

5 min

collagen

chitosan

H2O lyophilization

stabilized SeNPs

1 h, 25 °C

shakinglyophilization

EDC/NHS

cross-linking
FGF2-STAB®

solution 

Collagen/Chitosan

sponge
Collagen/Chitosan

cross-linked sponge

Collagen/Chitosan

/FGF2-STAB/SeNPs

sponge

Fig. 1 Scheme of Collagen/Chitosan sponge fabrication followed by FGF2-STAB® and SeNPs enrichment procedure
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by Hank’s balanced salt solution (HBSS) (Sigma Aldrich) 

containing penicillin (100 U/ml)/streptomycin (0.1  mg/

ml) (Biochrom, United Kingdom) and gentamicin (50 μg/

ml) (Biochrom). The samples were cut into 3  mm2 pieces 

and digested overnight at 37  °C in Petri dish (Techno 

Plastic Products, Trasadingen, Switzerland) in HBSS 

containing collagenase type I (100 U/ml, Thermo Fisher 

Scientific, USA). Next day, the suspension containing 

digested tissue was intensively shaken with vortex for 

30  s, filtered through a 100  µm nylon cell strainer (Fal-

con™, Thermo Fisher Scientific) and the cell suspension 

was transferred into a 75  cm2 cultivation flask (Techno 

Plastic Products) containing 10  ml of culture medium, 

which was composed of low glucose Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Thermo Fisher Scientific), 10% 

heat-inactivated fetal bovine serum (FBS) (Thermo Fisher 

Scientific), penicillin (100 U/ml)/streptomycin (0.1  mg/

ml) (Biochrom), 0.5% l-glutamin (Biosera, France) and 

1.0% non-essential amino acids (Biosera). NHDF were 

cultured at 37 °C, 5%  CO2 up to 80% confluence and pas-

saged. NHDF in the 3rd–5th passage were used for all 

experiments.

Biocompatibility using normal human dermal fibroblasts

To investigate biocompatibility via fibroblast’s viability of 

3D scaffolds and solutions with various concentrations of 

SeNPs and FGF2-STAB®, normal human dermal fibro-

blasts were used. The fibroblasts were grown in Dubec-

co’s modified eagle medium (DMEM D6546-500  ml 

Sigma-Aldrich) supplemented with 10% inactivated fetal 

bovine serum (FBS), 1% penicillin–streptomycin and 1% 

l-glutamine in a standard cell culture incubator (37  °C, 

humidified, 5%  CO2, 20%  O2 environment, nonshaking).

The solutions with various concentrations of SeNPs 

and FGF2-STAB® were incubated in a standard cell cul-

ture incubator for 72 h for the proliferation assays, the 3D 

scaffold samples were incubated for 3, 7, and 10 days. To 

ascertain the IC50 value, the ultra-high concentration of 

selenium nanoparticles was used.

The alamarBlue (AB) assay was carried out accord-

ing to the manufacturer’s instructions. Briefly, the con-

trol medium was removed; the cells were rinsed with 

phosphate-buffered saline (PBS) and 0.5  ml for 2D and 

1.5  ml for the 3D experiment of an AB solution (5% 

[v/v] solution of alamarBlue™ Dye, ThermoFisher Scien-

tific) prepared in the fresh medium were added to each 

well. Following 4 h incubation for 2D and 3 h for the 3D 

experiment, AB absorbance was quantified at the wave-

length of 562 nm using a BIO-TEK® ELx800 microplate 

reader. The results were averaged over 3 different inde-

pendent experiments (n = 3, each conducted with a one-

week interval) with 3 replicates per experiment (3 × 6 

well plates), each replicate being prepared from different 

T75 flasks to take into account the biological variability. 

Finally, for each plate, the reading was also done in trip-

licate (values obtained from 3 different wells averaged) 

to include the technical variability due to the efficiency 

of AB assay, the sensitivity of the plate reader, or simply 

related to the sample preparation. For each experiment, 

wells containing only the AB solution without cells were 

also prepared and incubated for 3 or 4  h. The absorb-

ance measured in those was used as a background and 

subtracted.

Biocompatibility of scaffolds

200.000 NHDF cells in 200 µl of the diluted cell suspen-

sion were applied directly on to the 3D scaffolds and after 

2 h added 1.3 ml of media into each well with the scaf-

fold. After 3, 7 and 10  days, the absorbance of AB was 

measured using a microplate reader at a wavelength of 

562 nm.

Biocompatibility of SeNPs and FGF2‑STAB®

To each well of a 24-well microtiter plate, 20.000 NHDF 

cells in 500 µl of the diluted cell suspension was applied. 

Different nanoparticle concentrations (0, 1, 5, 10, 50 and 

100 µg/ml) prepared in maintenance media were added. 

The media with zero nanoparticle concentration were 

considered for positive control.

After 24 and 72 h, the absorbance was measured using 

a microplate reader at a wavelength of 562 nm.

The same experiment procedure was carried out with 

different FGF2-STAB® concentrations (0.01, 0.05, 0.10, 

0.50, 1.00  µg/ml), and the same experiment procedure 

was carried out also for various combinations of con-

centrations for both agents—SeNPs (0, 1, 5, 10, 50 and 

100  µg/ml) and FGF2-STAB® (0.01, 0.05, 0.10, 0.50, 

1.00 µg/ml).

Ex ovo CAM assay

On the day of arrival (day 0), 36 fertilized chicken eggs 

were received from Henry Steward & Co. (UK) and were 

placed in an R-Com King Suro 20 digital egg incubator 

at 37.5  °C to allow the embryos to develop. On day 3, 

embryos were removed from their eggshells and trans-

ferred into 100  ml weighing boats containing 2  ml PBS 

with a 1% addition of penicillin–streptomycin (PS). The 

weighing boats were then placed in Petri dishes contain-

ing 12  ml distilled water and lids were placed over the 

weighing boats to conserve humidity. By removing the 

embryos from the shells, chick chorioallantoic mem-

branes (CAMs) were exposed, allowing for clearer images 

to be obtained [8]. The embryos were then transferred 

to trays in a humidified Binder Classic Line incuba-

tor and allowed to develop further at 37 °C. On day 7, a 

3D scaffold sample wet by 0.2  ml PBS, was placed onto 
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the surface of each CAM and again allowed to develop 

in Binder incubator. Images were taken of the samples 

and surrounding vasculature on days 7 and 10–13, using 

Motorola USB microscope coupled with Microcapture 

imaging software. On day 13 the embryos were sacrificed 

and the scaffold samples (including a small amount of the 

surrounding CAM) were explanted and fixed by placing 

in 3.7% formaldehyde for at least 24 h.

To quantify angiogenic properties, the blood vessels 

growing perpendicularly (within ± 45°) towards the scaf-

fold were ranked, manually counted, and recorded. Anal-

ysis of vascular response was based on a total increase in 

blood vessels growing perpendicularly towards the sam-

ple, by subtracting the number of vessels seen on day 7 

for a particular sample. All samples were blinded before 

counting to eliminate the risk of bias. The vasculogenic 

index corresponds to the number of newly created ves-

sels between days 7 and 10 after fertilization.

Biocompatibility on primary normal human dermal 

fibroblasts

NHDF seeding into scaffolds

All scaffolds were pre-incubated 1 h before NHDF seed-

ing in 150 μl of culture medium in 96 well plate (Techno 

Plastic Products, Switzerland) to ensure treminated 

swelling and volume increase. After NHDF passage and 

counting in Bürker chamber, culture medium was aspi-

rated from the scaffolds and 20 000 NHDF were seeded 

on each scaffold in 150 μl of culture medium containing 

only 0.5% FBS (previously used 10% FBS) to detect the 

possible effect of FGF2-STAB® in scaffolds. NHDF were 

cultured for 1 and 3 days followed by metabolic activity 

assay and by microscopic evaluation. Scaffolds Collagen/

Chitosan represented untreated control and scaffolds 

Collagen/Chitosan enriched by SeNPs and/or by FGF2-

STAB® represented tested samples.

Metabolic activity assay

Metabolic activity of NHDF was estimated by alamarBlue 

assay converting blue resazurin to pink resofurin. After 

1 or 3  days of NHDF culture in scaffolds, each scaffold 

was transferred into another well of 96 well plate to pre-

vent signal from NHDF attached to bottoms of wells. 

Afterwards, 100 μl of alamarBlue solution (ThermoFisher 

Scientific) 10 × diluted in the culture medium contain-

ing 0.5% FBS was added to each scaffold and NHDF were 

incubated for 2  h at 37  °C, 5%  CO2. Afterwards, 100  μl 

of culture medium was transferred into a black 96-well 

test plate (ThermoFisher Scientific) and fluorescence was 

measured at 530 nm (ex) and 590 nm (em) in a microplate 

reader (Synergy HT, Biotek, USA). Results are expressed 

as mean ± SD from 3 independent NHDF donors.

Live/dead assay

Alive NHDF in the scaffolds were visualized by vital 

intracellular stain calcein-AM and dead NHDF in the 

scaffolds were visualized by propidium iodide (PI). 

After 1 or 3  days of NHDF culture in scaffolds, each 

scaffold was transferred into another well of 96 well 

plate to prevent signal from NHDF attached to the 

bottoms of wells. 150  μl of culture medium with 0.5% 

FBS and containing calcein-AM (1 μg/ml), PI (1 μg/ml) 

and nuclear stain Hoechst 33,342 (1  μg/ml) (all Ther-

moFisher Scientific) were added to each scaffolds and 

NHDF were incubated for 30  min at 37  °C, 5%  CO2. 

Afterwards, each scaffold was washed by PBS and 

transferred into Petri dish with a thin glass bottom cov-

ered by fresh culture medium to perform microscopic 

analysis using Olympus IX83. Fluorescent pictures 

were taken using objective 4x (NA0.15) at 488  nm for 

calcein, at 561  nm for PI, and at 405  nm for Hoechst 

33,342. Images were standardized for publication in 

ImageJ (NIH, Bethesda, Maryland, USA).

Antibacterial properties

The antibacterial properties of the prepared samples 

were tested on different bacterial strains from Czech 

Collection of Microorganisms (Brno, Czech Repub-

lic), which represented by both gram-positive (Staphy-

lococcus aureus NCTC 8511 and  MRSA CCM 7110) 

and gram-negative (Escherichia coli NCTC 13216),bac-

teria. Bacterial cultures were cultured on blood agar 

plates overnight at 37 °C.

Bacterial cultures were diluted in PBS to the  opti-

cal density (600  nm) corresponding to 0.5  McFarland 

turbidity. The diluted bacterial suspension was further 

diluted 1:100  in Mueller–Hinton broth (Oxoid, UK) to 

the cell density ∼ 1 ×  106  CFU/ml (where CFU is the 

colony forming unit). Each test tube contained 1  ml 

of this diluted culture, followed by a piece of sample 

(d = 8.37 mm, h = 1.5 mm). Samples were incubated for 

24  h at 37  °C with continuous rotation (Rotator Multi 

Bio RS-24, Biosan, Latvia) and the optical density reads 

(620 nm) were monitored at predetermined time inter-

vals (0, 7, 24 h) using Multiskan EX (Thermo Fisher Sci-

entific, Bremen, Germany).

Morphology

The morphology and microstructure of  lyophilized 

collagen scaffolds were studied using scanning elec-

tron microscopy (SEM), Tescan, Lyra3 XM  (Tescan, 

Brno, Czech Republic). For better resolution, the sam-

ples were coated with the  20  nm of  gold layer (except 

SeNPs observation). All observations were made 
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in the secondary electron emission mode at 5 kV accel-

eration voltage.

Pore size of  the scaffolds was characterized from 

the  SEM visualization using the image analyses pro-

gram ImageJ. Average pore size was calculated 

from  100 measured values from images collected with 

magnification 274×.

Statistical analysis

All values are expressed as mean ± SD and came from 

at least 3 independent repetitions. Data normality 

was checked by Shapiro–Wilk test. Non-paramet-

ric Mann–Whitney test with Bonferroni correction 

was applied for in  vitro biocompatibility data analysis 

since the assumption of normality was infringed and 

Kruskal–Wallis test H. Parametric One-way ANOVA 

with Bonferroni correction was applied for angiogenic 

properties evaluation and the level of significance was 

set at 0.05.

Results and discussion

Biocompatibility using human dermal fibroblasts cell line

Biocompatibility of scaffolds

According to our previous studies [6, 9, 19] the FGF2-

STAB® concentration of 2 µg/ml and the SeNPs concen-

trations of 2, 10 and 20 µg/ml were selected for Collagen/

Chitosan scaffold preparation. Table  1 summarizes pre-

pared Collagen/Chitosan sponges for characterization.

Metabolic activity of Normal Human Dermal Fibro-

blasts (NHDF) was estimated by alamarBlue assay on all 

prepared scaffolds (Fig. 2).

Scaffolds enriched with FGF2-STAB® displayed bet-

ter NHDF metabolic activity compared to Collagen/

Chitosan scaffolds without FGF2-STAB®, however the 

results were not statistically singnificant. Contrary, scaf-

folds enriched with both FGF2-STAB® and SeNPs at 

higher concentrations (Collagen/Chitosan/FGF2-STAB2/

SeNPs10, Collagen/Chitosan/FGF2-STAB2/SeNPs20), 

exhibited lower metabolic activity compared to scaffolds 

enriched with SeNPs only (Collagen/Chitosan/SeNPs10, 

Collagen/Chitosan/SeNPs20). This finding suggested 

there were interactions between SeNPs and FGF2-STAB® 

and prompted a more detailed exploration of the syner-

gistic or antagonistic effects of SeNPs with FGF2-STAB®.

Biocompatibility of SeNPs and FGF2‑STAB®

A previous study on the cytotoxicity of SeNPs on fibro-

blasts was conducted, where concentrations as high as 

128 µg/ml of SeNPs were considered nontoxic [44]. Based 

on the Fig.  2 results exhibiting antagonistic effects of 

Table 1 Prepared Collagen/Chitosan scaffolds

Scaffold c (FGF2-
STAB®), (µg/
ml)

c (SeNPs), 
(µg/ml)

Collagen/Chitosan 0 0

Collagen/Chitosan/SeNPs2 0 2

Collagen/Chitosan/SeNPs10 0 10

Collagen/Chitosan/SeNPs20 0 20

Collagen/Chitosan/ FGF2-STAB2 2 0

Collagen/Chitosan/ FGF2-STAB2/SeNPs2 2 2

Collagen/Chitosan/ FGF2-STAB2/SeNPs10 2 10

Collagen/Chitosan/ FGF2-STAB2/SeNPs20 2 20
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Fig. 2 NHDF metabolic activity represented in absorbance units in dependence on increasing SeNPs concentration for Collagen/Chitosan 
scaffolds after 3, 7 and 10 days of incubation a without FGF2-STAB® and b with 2 µg/ml of FGF2-STAB®. Data represent the mean ± SD of minimum 
6 biologically independent experiments with technical triplicate each. P-value below 0.05 (*) are considered statistically significant (Kruskal–Wallis 
test H)
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SeNPs with FGF2-STAB® at SeNPs concentrations lower 

than 10  µg/ml, further cytotoxicity studies were carried 

out on NHDF with extreme concentrations of either 

SeNPs or FGF2-STAB® in solution (without scaffold).

For SeNPs cytotoxicity evaluation, different nanopar-

ticle concentrations (0, 1, 5, 10, 50 and 100 µg/ml) were 

prepared in maintenance media and were tested (Fig. 3).

According to results from Fig.  3, the concentration of 

SeNPs at viability 50% and 80% was calculated as IC50 

and IC80, respectively (Table 2). The IC50 value indicates 

the concentration of selenium nanoparticles needed to 

inhibit a biological process (i.e., fibroblast viability) by 

half. Although there is no agreed value for tissue replace-

ment, we used the IC80 value (where 80% of fibroblasts 

remain viable) to determine concentrations suitable for 

future scaffold development. At this point we can con-

clude that SeNPs concentrations of 10 and 20  µg/ml 

previously used in scaffolds induced unacceptable cyto-

toxicity. According to Table 2, concentration of 5.6 µg/ml 

of SeNPs are considered as safe for scaffolds applicable in 

tissue replacement.

The same experimental procedure was then carried out 

with different FGF2-STAB® concentrations (0, 0.01, 0.05, 

0.10, 0.50, 1.00  µg/ml) in solution (Fig.  4). The media 

with zero FGF2-STAB® concentration were considered 

for positive control. The addition of FGF2-STAB® into 

the scaffold seems to have a small positive effect already 

at very low concentrations of 0.01  µg/ml, but without 

statistical significance. In our experimental set-up the 

fibroblast medium contained fetal bovine serum, which 

contains a large number of nutritional and macromo-

lecular factors essential for cell growth, a potential expla-

nation for why FGF2-STAB® itself did not induce the 

positive effects expected from previous studies [20].

In order to understand how the two additives inter-

acted, an experiment was conducted with different con-

centrations of SeNPs and FGF2-STAB® in combination 

(Fig. 5a–d).

Figure 5a shows no effect of SeNPs at a concentration 

of 1  µg/ml on the metabolic activity of fibroblasts with 

increasing concentration of FGF2-STAB®. Figure  5b 

demonstrates that 10  µg/ml of SeNPs leads to a reduc-

tion in cell metabolic activity of fibroblasts, which con-

firms the previous findings shown in Table 2 (IC80 value 

calculation).

In general, from the results presented in Fig. 5a, b we 

can conclude, that selenium nanoparticles do not have a 

significant effect on viability at lower concentrations (up 

to 1 µg/ml of SeNPs), but have a negative effect on viabil-

ity at higher concentrations (above 10 µg/ml of SeNPs), 

especially after 72  h of incubation, in combinafion with 

and FGF2-STAB®.

The results in Fig.  5c, d show the synergistic effect of 

SeNPs with FGF2-STAB® in combination. Based on the 
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Table 2 Calculation of IC50 and IC80 of SeNPs on human dermal 
fibroblasts

Time Equation IC50, (µg/ml) IC80, (µg/ml)

24 h y = − 29.39ln(x) + 160.72 43.3 15.6

72 h y = − 24.83ln(x) + 122.97 18.9 5.6
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data shown here, the combination of 1  µg/ml FGF2-

STAB® and 1 µg/ml of SeNPs appears to be the optimal 

concentration for cell metabolic activity, with an increase 

after 72 h. However, the 1 µg/ml concentration of FGF2-

STAB® with SeNPs at 10  µg/ml concetration exhibited 

significant decreasing in fibroblast metabolic activity 

after 72 h (Fig. 5d).

According to Monopoli et  al. the interaction of NPs 

with biological media is key in the transport of NPs across 

the cell membrane. When NPs are exposed to fluids that 

contain proteins and other biomolecules (e.g. FGF2), part 

of those biomolecules is immediately adsorbed form-

ing the so-called “protein corona” [30]. The preparation 

process involves incorporation of SeNPs in the scaffolds 

firstly and incubation with FGF2-STAB® secondary.

Biomolecules in the environment adsorb strongly to 

the bare nanoparticle surface, forming a tightly bound 

layer of biomolecules, the ‘hard’ corona, in immediate 

contact with the nanoparticle. Other biomolecules, the 

‘soft’ corona, have a residual affinity to the nanoparti-

cle–hard-corona complex, but this is much lower, so 

that molecules are in rapid exchange with the envi-

ronment. If sufficiently long-lived in the corona, a 

biomolecule may lead to recognition of the nanopar-

ticle–corona complex as a whole by a cell membrane 

receptor. The same biomolecule alone can also be rec-

ognized by the receptor [30]. The size, shape, and sur-

face characteristics of NPs affect protein adsorption and 

have the ability to modify the structure of the adsorbed 

protein molecules which can significantly affect the 

reactivity of the NP with cells [37]. This may be the 

reason, why the metabolic activity of fibroblasts for a 

combination of SeNPs and FGF2-STAB® is lower than 

that for SeNPs alone. The cell receptor can recognize 

nanoparticle–corona complex as FGF2-STAB® itself 

and the nanoparticle inside the cell may have a negative 

impact. Kalishwaralal et al. reported a study, where the 

cellular functions of vascular endothelial growth factor 
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(VEGF) have been affected by silver nanoparticles. Sil-

ver nanoparticles inhibit VEGF induced endothelial cell 

migration. When VEGF was added, more endothelial 

cells migrated when compared with the control. While 

the significant area of the wound is uncovered in plates 

treated with 500 nM of silver nanoparticles in the pres-

ence and absence of VEGF [21]. This finding is signifi-

cant because VEGF as well as FGF2-STAB® mediated 

proliferation and migration has a central role in many 

pathological conditions like wound healing and chronic 

inflammation.

At this point, it is important to choose the opti-

mum concentration of additives. According to meta-

bolic activity assays, the best combination of agents 

is 0.01–1  µg/ml of SeNPs and 0.01–1  µg/ml of 

FGF2-STAB®.

Angiogenic properties of scaffolds

Concerning tissue regeneration  and wound healing, 

the formation of new blood vessels from the endothelium 

of the existing vasculature plays a fundamental role. Since 

these  scaffolds contain various bioactive agents, which 

have the potential to modulate angiogenesis, a  CAM 

assay was possible to test the angiogenic potential in an 

ex ovo environment.

Collagen/Chitosan scaffolds alone or dopped with 10 

or 20  µg/ml of SeNPS were compared with those hav-

ing added 2 µg/ml of FGF2-STAB®.The amount of vessels 

of each sample was evaluated at day 7 and 10 and their 

difference known as vasculogenic index was compared 

(Fig.  6a–h). As expected, CAM assay observations con-

firmed the results presented by in  vitro examination. 

Addition of FGF2-STAB® increased the vasculogenic 

index slightly, while the addition of high SeNPs concen-

trations of 10 and 20 µg/ml caused a significant decrease 

in vasculogenic index in comparison to scaffolds without 

SeNPs (Fig. 6a, e). Further studies are needed to test the 

effect of lower concentrations of SeNPs on angiogen-

esis. All embryos were traced up to day 13 to be sacri-

ficed. Some embryos did not survive until day 13 and 

died during the experiment especially at later stage due 

to the nonspecific inflammatory reaction. The highest 

percentage of embryos that survived until day 13 ranged 

from 85 to 92% for samples containing high amounts of 

SeNPs (Collagen/Chitosan/FGF2-STAB2/SeNPs20 and 

Collagen/Chitosan/SeNPs20). Contrary, the lowest value 

of only 62% exhibited sample without selenium contain-

ing FGF2-STAB® (Collagen/Chitosan/FGF2-STAB2). 

It is assumed, SeNPs could promote the antibacterial 

effect of penicillin–streptomycin, which is added to the 

PBS solution to prevent infection and thus premature 

embryo death. Although SeNPs were present in high 

concentrations in these samples (20 µg/ml), enrichment 

with SeNPs showed a positive effect on embryo survival.

Biocompatibility on primary normal human dermal 

fibroblasts

Following the results presented above, new scaffolds 

were prepared for biocompatibility evaluation with 

lower concentrations of the bioactive agents. According 

to metabolic activity assays, we selected the combina-

tion of agents with 0.5, 1.0 and 5.0 µg/ml of SeNPs and 

0 and 1 µg/ml of FGF2-STAB®. Table 3 summarizes the 

prepared Collagen/Chitosan scaffolds for  repetition of 

biocompatibility evaluation.

Metabolic activity and vitality of NHDF cultured for 

1 and 3  days in 3D Collagen/Chitosan based scaffolds 

enriched by SeNPs of different concentrations (0.5, 1.0, 

5.0 μg/ml) or enriched by SeNPs of different concentra-

tions (0.5, 1.0, 5.0 μg/ml) and by FGF2-STAB® of con-

centration 1  μg/ml was assessed by alamarBlue Assay 

(Fig. 7) and by live/dead staining followed by confocal 

fluorescent microscopy (Fig. 8), respectively. 

At day 1 NHDF exhibited same metabolic activity in 

Collagen/Chitosan scaffolds, in Collagen/Chitosan scaf-

folds enriched by SeNPs at concentration 0.5 μg/ml and 

in Collagen/Chitosan scaffolds enriched by SeNPs at 

concentration 0.5 μg/ml and by FGF2-STAB® (Fig. 7a). 

Collagen/Chitosan scaffolds enriched by SeNPs at 

concentration 1.0  μg/ml exhibited slight cytotoxic-

ity towards NHDF and the addition of FGF2-STAB® 

reversed this cytotoxic effect. Collagen/Chitosan scaf-

folds enriched by SeNPs at concentration 5.0  μg/ml 

without and with FGF2-STAB® exhibited cytotoxicity 

towards NHDF compared with scaffolds without SeNPs 

(5.0 μg/ml) (Fig. 7a). At day 3 NHDF exhibited the same 

metabolic activity in Collagen/Chitosan scaffolds and 

in Collagen/Chitosan scaffolds enriched by SeNPs at 

concentration 0.5 μg/ml and in Collagen/Chitosan scaf-

folds enriched by SeNPs at concentration 0.5 μg/ml and 

by FGF2-STAB® (Fig.  7b). Collagen/Chitosan scaffolds 

enriched with SeNPs at concentration 1.0 and 5.0 μg/ml 

exhibited cytotoxicity towards NHDF compared to Col-

lagen/Chitosan scaffolds without SeNPs. As expected 

scaffolds enriched with SeNPs at concentration 5.0 μg/

ml kept their cytotoxicity even after FGF2-STAB® addi-

tion (Fig. 7b).

Vital staining of NHDF showed a similar amount of via-

ble cells (green) on Collagen/Chitosan scaffolds enriched 

by SeNPs at concentrations 0.5 and 1.0  μg/ml without 

and with FGF2-STAB®. Collagen/Chitosan scaffolds con-

taining SeNPs at concentration 5.0 μg/ml showed lower 

cell density, however, attached cells remained viable 

especially after FGF2-STAB® addition, where the vital 

staining of NHDF is more intensive after 1 and 3  days 
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Fig. 6 a Box plot of vasculogenic index between day 7 and day 10 for Collagen/Chitosan samples without FGF2-STAB®. Collagen/Chitosan samples 
implanted on CAMs at day 7, 10 and 13 without FGF2-STAB®, b Collagen/Chitosan, c Collagen/Chitosan/SeNPs10, d Collagen/Chitosan/SeNPs20. e 
Box plot of vasculogenic index between day 7 and day 10 for samples with FGF2-STAB® 2 µg/ml. Collagen/Chitosan samples implanted on CAMs 
at day 7, 10 and 13 with FGF2-STAB® 2 µg/ml f Collagen/Chitosan/FGF2-STAB2, g Collagen/Chitosan/FGF2-STAB2/SeNPs10, H) Collagen/Chitosan/
FGF2-STAB2/SeNPs20. P-value below 0.05 (*) indicates significant differences between enriched scaffolds and the dedicated control scaffold 
(Collagen/Chitosan without SeNPs) (One-way ANOVA with Bonferroni correction)

Table 3 Prepared Collagen/Chitosan scaffolds for repetition of biocompatibility evaluation

Scaffold Label c(FGF2-STAB®), (µg/ml) c(SeNPs), 
(µg/ml)

Collagen/Chitosan C/Ch 0 0.0

Collagen/Chitosan/SeNPs0.5 C/Ch_Se0.5 0 0.5

Collagen/Chitosan/SeNPs1 C/Ch_Se1 0 1.0

Collagen/Chitosan/SeNPs5 C/Ch_Se5 0 5.0

Collagen/Chitosan/ FGF2-STAB1 C/Ch_FGF1 1 0.0

Collagen/Chitosan/ FGF2-STAB1/SeNPs0.5 C/Ch_FGF1_Se0.5 1 0.5

Collagen/Chitosan/ FGF2-STAB1/SeNPs1 C/Ch_FGF1_Se1 1 1.0

Collagen/Chitosan/ FGF2-STAB1/SeNPs5 C/Ch_F1_Se5 1 5.0



Page 11 of 16Muchová et al. J Nanobiotechnol          (2021) 19:103  

culture (Fig. 8). Viable NHDF exhibited a typical spindle-

like morphology and populated the whole 3-D volume of 

scaffolds.

Antibacterial properties of scaffolds

Due to the interactions and incorporation of antibacte-

rial agents into the scaffold structure it is possible that 

agents, which normally possess antibacterial properties, 

can lose these properties after addition into scaffolds or 

when combined with FGF2-STAB®. Therefore, experi-

ments were conducted to evaluate the bacterial inhibi-

tion of the prepared materials against E. coli, S. aureus 

and MRSA (Fig. 9).

According to our previous cytotoxicity evaluation on 

human dermal fibroblasts, the maximum concentration 

of SeNPs in the scaffold at 5 µg/ml was established. Pre-

vious studies have shown the minimum concentration of 

SeNPs for antimicrobial effectiveness, 1 µg/ml of SeNPs 

is needed to inhibit S. aureus growth [44].

Antibacterial activity was evaluated by  broth method 

against gram-positive and gram-negative bacteria. Anti-

bacterial ability was tested on Collagen/Chitosan scaf-

folds, Collagen/Chitosan scaffolds containing SeNPs or 

FGF2-STAB® and Collagen/Chitosan scaffolds contain-

ing both, SeNPs and FGF2-STAB®.

Based on the Fig. 9, the increase of SeNPs concentration 

in Collagen/Chitosan scaffolds resulted in an increase in 

the  antibacterial activity towards all of  the  tested bac-

terial strains, especially S. aureus. The highest inhibi-

tion effect was found for S. aureus (51–66%), for MRSA 

(37–53%) and the lowest activity was monitored in the 

case of E. coli (27–46%). S. aureus is the major cause of 

skin and soft tissue infections, moreover it belongs to the 

most common pathogen found at surgical site infections 

[43]. In addition, up to half of S. aureus clinical isolates 

are identified as methicillin-resistant [24]. The scaffolds 

without SeNPs also reduce bacterial growth (inhibition 

19–35%), which is likely due to the well-known antibacte-

rial properties of chitosan [47].

Comparing Collagen/Chitosan samples with or with-

out FGF2-STAB® showed that this growth factor had no 

noticeable antibacterial effects.

It has been noticed that the effect of selenium nano-

particles can significantly differ in gram-positive and 

gram-negative bacteria. Authors mentioned that the 

antimicrobial effects of SeNPs on bacterial cultures 

of S.  aureus and MRSA (gram-positive bacteria) were 

enhanced with increasing concentrations. In contrast, the 

effects on gram-negative bacteria E.  coli were observed 

only at the high concentration of 300 µM (23.7 μg/ml) of 

SeNPs [36, 44].

According to the antibacterial results shown in this 

study, we can confirm that SeNPs are able to enhance the 

scaffold’s antibacterial properties towards S. aureus  and 

MRSA at concentrations between 0.5  µg/ml and 5  µg/

ml. In agreement with the above mentioned studies, here 

SeNPs provided as well as lower inhibitory effect against 

gram-negative E. coli, however, some inhibition was still 

observed.
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Fig. 7 Metabolic activity determined by alamarBlue Assay of normal human dermal fibroblasts (NHDF) cultured in 3D Collagen/Chitosan based 
scaffolds enriched by SeNPs of different concentrations (0.5, 1.0, 5.0 μg/ml) or enriched by SeNPs of different concentrations (0.5, 1.0, 5.0 μg/ml) and 
by FGF2-STAB® of concentration 1 μg/ml for 1 day (a) and 3 days (b). Metabolic activity was assessed by alamarBlue. P-value below 0.05 (*) indicates 
significant differences between enriched scaffolds and the dedicated control scaffold (Collagen/Chitosan without SeNPs) (Mann–Whitney test with 
Bonferroni correction)
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The effect of additives on the scaffold microstructure

Different morphologies of  prepared Collagen/Chitosan-

based 3D scaffolds modified by both FGF2-STAB® and 

SeNPs are shown as SEM images in Fig. 10a–f. A homog-

enous network was formed by freeze-drying procedure, 

where the  interconnected 3D porous structure within 

Fig. 8 Vital staining of normal human dermal fibroblasts (NHDF) cultured in 3D Collagen/Chitosan based scaffolds enriched by SeNPs of different 
concentrations (0.5, 1.0, 5.0 μg/ml) or enriched by SeNPs of different concentrations (0.5, 1.0, 5.0 μg/ml) and by FGF2-STAB® of concentration 1 μg/
ml for 1 and 3 days. Alive NHDF were stained by calcein-AM (1 μg/ml, 30 min, 37 °C, 5%  CO2) (green) and dead NHDF in scaffolds were visualized by 
PI (1 μg/ml, 30 min, 37 °C, 5%  CO2) (red). Pictures were taken by Olympus IX83 in confocal mode with 4 × objective. Scale bar indicates 100 μm
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the  samples was created. The additives significantly 

changed the  microstructure visually. Collagen/Chitosan 

sample without any enrichment showed honeycomb-like 

structure. The  addition of  solutions with  SeNPs remod-

eled defined honeycomb structure into the more fibrous 

structure. Remodeling of  the  structure is mainly caused 

by the addition of SeNPs to the scaffolds while the addi-

tion of FGF2-STAB® only affected the structure slightly.

Figure 10g represents the pore size box plot of the pre-

pared scaffolds, where the range between 25 and 75th 

percentile of scaffolds moves from 39 to 141  μm in all 

samples (without statistical significance), which makes 

them suitable for cell growth. The Collagen/Chitosan/

FGF2-STAB1/SeNPs5 scaffold exhibited the  smallest 

pores of about 62 μm in the median value. In comparison 

to the  Collagen/Chitosan scaffold, all scaffolds enriched 

with FGF2-STAB® and/or SeNPs showed slightly smaller 
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pore size values. Figure 10h displays SeNPs morphology 

with scale bar of 500 nm.

Workflow summary

Although the research builds on our previous work, vari-

ous samples had to be prepared and analysed to deter-

mine the correct concentration of FGF2-STAB® and 

SeNPs in the scaffolds. For clarity, see the table showing 

the workflow scheme (Table 4).

In the beginning, scaffolds were prepared with con-

centrations of FGF2-STAB® and SeNPs that are based 

on literature (No. 1). The AB assay and the ex ovo CAM 

assay were performed that indicated an negative effect of 

SeNPs and FGF2-STAB® at high concentrations of SeNPs 

(10 and 20  µg/ml). Based on this finding, solutions of 

FGF2-STAB®, SeNPs, and their combinations at different 

concentrations were tested in more detail in vitro (No. 2, 

3, 4). For SeNPs, the IC80 value was calculated based on 

the AB assay which is 5.6 µg/ml of SeNPs for NHDF (No. 

2). From the analysis carried out in No. 3, a positive effect 

on fibroblast metabolic activity at a concentration as low 

as 0.01 µg/ml was proved, but no significant effect of the 

FGF2-STAB® concentration in the range 0.01–1.00  µg/

ml. Various combinations of FGF2-STAB® and SeNPs 

in solution were prepared for another metabolic activ-

ity evaluation (No. 4). Here a synergistic effect of SeNPs 

and FGF2-STAB® was observed as in the previous experi-

ments in No. 1. The best combination of agents turned 

out to be 0.01–1  µg/ml of SeNPs and 0.01–1  µg/ml of 

FGF2-STAB®. Based on previous results, additional scaf-

folds were prepared to contain adjusted concentrations of 

FGF2-STAB® and SeNPs and the AB assay analysis was 

repeated (No. 5). These scaffolds were also subjected to 

antibacterial tests and imaged by SEM. In conclusion, up 

to a concentration of 0.5 µg/ml SeNPs, the antibacterial 

effect was more dominant, because further addition of 

SeNPs did not increase antibacterial effects in any case 

even with FGF2-STAB® enrichment or pure Collagen/

Chitosan scaffold. Already low addition of SeNPs sig-

nificantly increased the antibacterial effect. However, the 

cytotoxic effect began to predominate at concentrations 

higher than 0.5 µg/ml of SeNPs, which was amplified by 

the addition of FGF2-STAB®.

Conclusions

In this study, Collagen/Chitosan scaffolds were enriched 

with selenium nanoparticles (SeNPs) and hyperstable 

fibroblast growth factor  2 (FGF2-STAB®) to develop 

safe antibacterial and vasculogenic scaffolds for possible 

aplication as tissue-engineered skin replacement. This 

study aimed to determine the optimum concentrations 

of these two biomolecules in combination with Colla-

gen/Chitosan to ensure a safe and effective dose both in 

terms of cytotoxicity and biocompatibility and in terms 

of antibacterial effect. This study has shown that Colla-

gen/Chitosan scaffolds enriched with SeNPs combined 

with FGF2-STAB® must consider the mutual interaction 

between biomolecules and the toxic effects of higher 

SeNPs concentrations. Results showed a synergistic 

effect of SeNPs and FGF2-STAB® and showed the opti-

mal concentrations were 0.5 µg/ml for SeNPs and 1 µg/

ml for FGF2-STAB® for Collagen/Chitosan scaffold 

enrichment. Scaffolds dopped with 0.5 µg/ml SeNPs and 

1  µg/ml FGF2-STAB® were shown to support fibroblast 

attachment and metabolic activity while also displaying 

antibacterial activity against three bacterials strains (E. 

coli, S. aureus and MRSA).

Table 4 Workflow scheme

No Material c (SeNPs) (µg/ml) c (FGF2-STAB®) (µg/ml) Analysis Summary

1 Collagen/Chitosan scaffold 0; 2; 10; 20 0; 2 AB assay
CAM assay

Antagonistic effect of SeNPs and FGF2-STAB® at high 
concentrations of SeNPs (10 and 20 µg/ml)

2 Solution 0; 1; 5; 10; 50; 100 / AB assay
IC80 calculation

IC80 is 5.6 µg/ml of SeNPs for HDF

3 Solution / 0; 0.01; 0.05; 0.1; 0.5; 1 AB assay Positive effect on fibroblast metabolic activity at 
a concentration as low as 0.01 µg/ml

4 Solution 1; 10 0; 0.01; 0.1; 1 AB assay Synergistic effect of SeNPs and FGF2-STAB® was 
confirmed in solution; the best combination of 
agents is 0.01–1 µg/ml of SeNPs and 0.01–1 µg/ml 
of FGF2-STAB®

0; 0.01; 0.1; 1; 10 0.1; 1

5 Collagen/Chitosan scaffold 0; 0.5; 1; 5 0; 1 AB assay, Life/
dead assay

Broth method
Morphology 

and pore size 
analysis

Optimal concentration for Collagen/Chitosan scaffold 
enrichment is 0.5 µg/ml of SeNPs and 1 µg/ml of 
FGF2-STAB®
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In the following studies, we address Collagen/Chi-

tosan scaffolds that can release SeNPs more slowly, 

thus limiting the negative effect of SeNPs. Early release 

of FGF2-STAB® could promote cell proliferation at the 

beginning of healing, and gradual slow release of SeNPs 

could prevent infection in the subsequent stages of 

healing. This study has demonstrated the importance 

of understanding the interactions between nanoparti-

cles and proteins in scaffold design and why it is neces-

sary to verify these interactions for the safety of tissue 

replacements intended for use in the body.
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