113 research outputs found
Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries
We describe computational tools that have been developed to simulate
dynamical mass transfer in semi-detached, polytropic binaries that are
initially executing synchronous rotation upon circular orbits. Initial
equilibrium models are generated with a self-consistent field algorithm; models
are then evolved in time with a parallel, explicit, Eulerian hydrodynamics code
with no assumptions made about the symmetry of the system. Poisson's equation
is solved along with the equations of ideal fluid mechanics to allow us to
treat the nonlinear tidal distortion of the components in a fully
self-consistent manner. We present results from several standard numerical
experiments that have been conducted to assess the general viability and
validity of our tools, and from benchmark simulations that follow the evolution
of two detached systems through five full orbits (up to approximately 90
stellar dynamical times). These benchmark runs allow us to gauge the level of
quantitative accuracy with which simulations of semi-detached systems can be
performed using presently available computing resources. We find that we should
be able to resolve mass transfer at levels per
orbit through approximately 20 orbits with each orbit taking about 30 hours of
computing time on parallel computing platforms.Comment: 34 pages, 20 eps figures, submitted to ApJ
Numerical Simulations of the Onset and Stability of Dynamical Mass Transfer in Binaries
Hydrodynamical simulations of semi-detached, polytropic binary stars are
presented in an effort to study the onset and stability of dynamical mass
transfer events. Initial, synchronously rotating equilibrium models are
constructed using a self-consistent-field technique and then evolved with an
Eulerian hydrodynamics code in a fully self-consistent manner. We describe code
improvements introduced over the past few years that permit us to follow
dynamical mass-transfer events through more than 30 orbits. Mass-transfer
evolutions are presented for two different initial configurations: A
dynamically unstable binary with initial mass ratio (donor/accretor) that leads to a complete merger in orbits; and a
double-degenerate binary with initial mass ratio that, after some
initial unstable growth of mass transfer, tends to separate as the
mass-transfer rate levels off.Comment: 47 pages, 11 figures, submitted to the Astrophysical Journal. See
http://www.phys.lsu.edu/faculty/tohline/astroph/dmtf05 for high resolution
figures and mpeg animation
Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses.
Importance: Approximately one-quarter of adnexal masses detected at ultrasonography are indeterminate for benignity or malignancy, posing a substantial clinical dilemma. Objective: To validate the accuracy of a 5-point Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score for risk stratification of adnexal masses. Design, Setting, and Participants: This multicenter cohort study was conducted between March 1, 2013, and March 31, 2016. Among patients undergoing expectant management, 2-year follow-up data were completed by March 31, 2018. A routine pelvic MRI was performed among consecutive patients referred to characterize a sonographically indeterminate adnexal mass according to routine diagnostic practice at 15 referral centers. The MRI score was prospectively applied by 2 onsite readers and by 1 reader masked to clinical and ultrasonographic data. Data analysis was conducted between April and November 2018. Main Outcomes and Measures: The primary end point was the joint analysis of true-negative and false-negative rates according to the MRI score compared with the reference standard (ie, histology or 2-year follow-up). Results: A total of 1340 women (mean [range] age, 49 [18-96] years) were enrolled. Of 1194 evaluable women, 1130 (94.6%) had a pelvic mass on MRI with a reference standard (surgery, 768 [67.9%]; 2-year follow-up, 362 [32.1%]). A total of 203 patients (18.0%) had at least 1 malignant adnexal or nonadnexal pelvic mass. No invasive cancer was assigned a score of 2. Positive likelihood ratios were 0.01 for score 2, 0.27 for score 3, 4.42 for score 4, and 38.81 for score 5. Area under the receiver operating characteristic curve was 0.961 (95% CI, 0.948-0.971) among experienced readers, with a sensitivity of 0.93 (95% CI, 0.89-0.96; 189 of 203 patients) and a specificity of 0.91 (95% CI, 0.89-0.93; 848 of 927 patients). There was good interrater agreement among both experienced and junior readers (κ = 0.784; 95% CI, 0.743-0824). Of 580 of 1130 women (51.3%) with a mass on MRI and no specific gynecological symptoms, 362 (62.4%) underwent surgery. Of them, 244 (67.4%) had benign lesions and a score of 3 or less. The MRI score correctly reclassified the mass origin as nonadnexal with a sensitivity of 0.99 (95% CI, 0.98-0.99; 1360 of 1372 patients) and a specificity of 0.78 (95% CI, 0.71-0.85; 102 of 130 patients). Conclusions and Relevance: In this study, the O-RADS MRI score was accurate when stratifying the risk of malignancy in adnexal masses
Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.
One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort
Linkage study of fibrinogen levels: the Strong Heart Family Study
<p>Abstract</p> <p>Background</p> <p>The pathogenesis of atherosclerosis involves both hemostatic and inflammatory mechanisms. Fibrinogen is associated with both risk of thrombosis and inflammation. A recent meta-analysis showed that risk of coronary heart disease may increase 1.8 fold for 1 g/L of increased fibrinogen, independent of traditional risk factors. It is known that fibrinogen levels may be influenced by demographic, environmental and genetic factors. Epidemiologic and candidate gene studies are available; but few genome-wide linkage studies have been conducted, particularly in minority populations. The Strong Heart Study has demonstrated an increased incidence of cardiovascular disease in the American Indian population, and therefore represents an important source for genetic-epidemiological investigations.</p> <p>Methods</p> <p>The Strong Heart Family Study enrolled over 3,600 American Indian participants in large, multi-generational families, ascertained from an ongoing population-based study in the same communities. Fibrinogen was determined using standard technique in a central laboratory and extensive additional phenotypic measures were obtained. Participants were genotyped for 382 short tandem repeat markers distributed throughout the genome; and results were analyzed using a variance decomposition method, as implemented in the SOLAR 2.0 program.</p> <p>Results</p> <p>Data from 3535 participants were included and after step-wise, linear regression analysis, two models were selected for investigation. Basic demographic adjustments constituted model 1, while model 2 considered waist circumference, diabetes mellitus and postmenopausal status as additional covariates. Five LOD scores between 1.82 and 3.02 were identified, with the maximally adjusted model showing the highest score on chromosome 7 at 28 cM. Genes for two key components of the inflammatory response, i.e. interleukin-6 and "signal transducer and activator of transcription 3" (<it>STAT3</it>), were identified within 2 and 8 Mb of this 1 LOD drop interval respectively. A LOD score of 1.82 on chromosome 17 between 68 and 93 cM is supported by reports from two other populations with LOD scores of 1.4 and 1.95.</p> <p>Conclusion</p> <p>In a minority population with a high prevalence of cardiovascular disease, strong evidence for a novel genetic determinant of fibrinogen levels is found on chromosome 7 at 28 cM. Four other loci, some of which have been suggested by previous studies, were also identified.</p
Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound
International audience; ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information
Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition
- …