62 research outputs found

    Associated Production of a W Boson and One b Jet

    Full text link
    We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross section for jets containing a single b quark and jets containing a b-anti b pair. There are a wide variety of processes that contribute, and it is necessary to include them all in order to have a complete description at both colliders.Comment: LaTeX, 16 pages, 22 postscript figures; version published in Phys. Rev.

    Towards W b bbar + j at NLO with an automatized approach to one-loop computations

    Full text link
    We present results for the O(alpha_s) virtual corrections to q g -> W b bbar q' obtained with a new automatized approach to the evaluation of one-loop amplitudes in terms of Feynman diagrams. Together with the O(alpha_s) corrections to q q' -> W b bbar g, which can be obtained from our results by crossing symmetry, this represents the bulk of the next-to-leading order virtual QCD corrections to W b bbar + j and W b + j hadronic production, calculated in a fixed-flavor scheme with four light flavors. Furthermore, these corrections represent a well defined and independent subset of the 1-loop amplitudes needed for the NNLO calculation of W b bbar. Our approach was tested against several existing results for NLO amplitudes including selected O(alpha_s) one-loop corrections to W + 3 j hadronic production. We discuss the efficiency of our method both with respect to evaluation time and numerical stability.Comment: 14 pages, 3 figure

    W and Z/gamma* boson production in association with a bottom-antibottom pair

    Get PDF
    We present a study of l\nu b\bar{b} and l+ l- b\bar{b} production at hadron colliders. Our results, accurate to the next-to-leading order in QCD, are based on automatic matrix-element calculations performed by MadLoop and MadFKS, and are given at both the parton level, and after the matching with the Herwig event generator, achieved with aMC@NLO. We retain the complete dependence on the bottom-quark mass, and include exactly all spin correlations of final-state leptons. We discuss the cases of several observables at the LHC which highlight the importance of accurate simulations.Comment: 18 pages, 12 figures. References updated, minor changes to the tex

    Theory for the FCC-ee : Report on the 11th FCC-ee Workshop

    Get PDF
    The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory e+e−e^+e^- collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments

    Adenomyoepithelioma of the breast: A proposal for classification

    Get PDF
    Breast lesions with a prominent myoepithelial cell component constitute a heterogeneous group of benign and malignant neoplastic proliferations. These lesions are often dual epithelial‐myoepithelial but may be purely myoepithelial cell in nature. Benign epithelial‐myoepithelial lesions typically maintain the morphology and immunophenotype of the normal bilayer epithelial myoepithelial structures. However, the distinction between the two cell components is not always clear‐cut in malignant lesions in which the histogenesis of myoepithelial cells remains uncertain. Neoplastic biphasic epithelial‐myoepithelial lesions of the breast include adenomyoepithelioma (AME), pleomorphic adenoma and adenoid cystic carcinoma. Four histological patterns of classical AME have been described: tubular, lobulated, spindle cell and adenosis variants. Overlapping patterns occur and some AMEs display an intraductal papillary pattern that may represent a fifth variant. AME can be benign or malignant. Classical AME may show atypical features, which are not sufficient for the diagnosis of malignancy (atypical AME). Atypical AME is recognised as a lesion of uncertain malignant potential with limited metastatic capability. Based on the histological features, we propose a classification of malignant AME (M‐AME) into three variants: M‐AME in situ, M‐AME invasive and AME with invasive carcinoma. In this review, we provide an overview of myoepithelial lesions of the breast focusing on the classification of AME to improve not only the consistency of reporting but also help guide further management decision making

    Analytic Form of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD

    No full text
    International audienceWe present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new approach to the treatment of particle states in D dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation

    Analytic form of planar two-loop five-patron scattering amplitudes in QCD

    No full text
    International audienceWe discuss the recent calculation of the analytic form of the two-loop five-parton amplitudes in QCD. These constitute the full set of amplitudes required for the computation of NNLO QCD corrections to three-jet production at hadron colliders in the leading-color approximation. The calculation is done by combining efficient numerical evaluations and analytic reconstruction techniques. The techniques we present open the door to the evaluation of multi-leg two-loop amplitudes beyond the current state of the art
    • 

    corecore