67 research outputs found

    Transition from a one-dimensional to a quasi-one-dimensional state in interacting quantum wires

    Get PDF
    Upon increasing the electron density in a quantum wire, the one-dimensional electron system undergoes a transition to a quasi-one-dimensional state. In the absence of interactions between electrons, this corresponds to filling up the second subband of transverse quantization, and there are two gapless excitation modes above the transition. On the other hand, strongly interacting one-dimensional electrons form a Wigner crystal, and the transition corresponds to it splitting into two chains (zigzag crystal). The two chains are locked, so their relative motion is gapped, and only one gapless mode remains. We study the evolution of the system as the interaction strength changes, and show that only one gapless mode exists near the transition at any interaction strength.Comment: 4 pages, 2 figure

    Conductance of a Mott Quantum Wire

    Full text link
    We consider transport through a one-dimensional conductor subject to an external periodic potential and connected to non-interacting leads (a "Mott quantum wire"). For the case of a strong periodic potential, the conductance is shown to jump from zero, for the chemical potential lying within the Mott-Hubbard gap, to the non-interacting value of 2e^2/h, as soon as the chemical potential crosses the gap edge. This behavior is strikingly different from that of an optical conductivity, which varies continuously with the carrier concentration. For the case of a weak potential, the perturbative correction to the conductance due to Umklapp scattering is absent away from half-filling.Comment: 4 pages, RevTex, 1 ps figure included; published versio

    Modes of magnetic resonance in the spin liquid phase of Cs2CuCl4

    Full text link
    We report the observation of a frequency shift and splitting of the electron spin resonance (ESR) mode of the low-dimensional S=1/2 frustrated antiferromagnet Cs2CuCl4 in the spin-correlated state below the Curie-Weiss temperature 4 K but above the ordering temperature 0.62 K. The shift and splitting exhibit strong anisotropy with respect to the direction of the applied magnetic field and do not vanish in zero field. The low-temperature evolution of spin resonance response is a result of the specific modification of one-dimensional spinon continuum under the action of the uniform Dzyaloshinskii-Moriya interaction (DM) within the spin chains. Parameters of the uniform DM interaction are derived from the experiment.Comment: 10 pages, 12 figure

    Transport through a finite Hubbard chain connected to reservoirs

    Full text link
    The dc conductance through a finite Hubbard chain of size N coupled to two noninteracting leads is studied at T = 0 in an electron-hole symmetric case. Assuming that the perturbation expansion in U is valid for small N (=1,2,3,...) owing to the presence of the noninteracting leads, we obtain the self-energy at \omega = 0 analytically in the real space within the second order in U. Then, we calculate the inter-site Green's function which connects the two boundaries of the chain, G_{N1}, solving the Dyson equation. The conductance can be obtained through G_{N1}, and the result shows an oscillatory behavior as a function of N. For odd N, a perfect transmission occurs independent of U. This is due to the inversion and electron-hole symmetries, and is attributed to a Kondo resonance appearing at the Fermi level. On the other hand, for even N, the conductance is a decreasing function of N and U.Comment: 11 pages, RevTeX, 6 figures, to be published in Phys. Rev. B 59 (1999

    Origin of spin-gap in CaV4_4O9_9: effect of frustration and lattice distortion

    Full text link
    We study the origin of spin-gap in recently discovered material CaV4_4O9_9. We analyze the spin-1/21/2 Heisenberg model on the 1/51/5 depleted square lattice with nearest neighbor (nn) and next nearest neighbor (nnn) interactions, in terms of the singlet and triplet states of the 4-spin plaquettes and 2-spin dimers. Phase diagram of the model is obtained within a linear ``spin-wave"-like approximation, and is shown to agree well with the earlier results of QMC simulations for nn interactions. We further propose that the special lattice structure of CaV4_4O9_9 naturally leads to lattice distortions, which enhances the spin-gap via a spin-Peierls mechanism.Comment: 4 pages, RevTex, 2 postscript figures. Latex file and figures have been uuencode

    Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9

    Full text link
    We have performed ab-initio calculations of exchange couplings in the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the Heisenberg model with these exchange couplings is then calculated by quantum Monte Carlo method; it agrees well with the experimental measurements. Based on our results we naturally explain the unusual magnetic properties of these materials, especially the huge difference in spin gap between CaV2O5 and MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating valence bond (RVB)" spin gap in CaV4O9

    Unusual conductance collapse in one-dimensional quantum structures

    Full text link
    We report an unusual insulating state in one-dimensional quantum wires with a non-uniform confinement potential. The wires consist of a series of closely spaced split gates in high mobility GaAs/AlGaAs heterostructures. At certain combinations of wire widths, the conductance abruptly drops over three orders of magnitude, to zero on a linear scale. Two types of collapse are observed, one occurring in multi-subband wires in zero magnetic field and one in single subband wires in an in-plane field. The conductance of the wire in the collapse region is thermally activated with an energy of the order of 1 K. At low temperatures, the conductance shows a steep rise beyond a threshold DC source-drain voltage of order 1 mV, indicative of a gap in the density of states. Magnetic depopulation measurements show a decrease in the carrier density with lowering temperature. We discuss these results in the context of many-body effects such as charge density waves and Wigner crystallization in quantum wires.Comment: 5 pages, 5 eps figures, revte

    Quantum-critical scaling and temperature-dependent logarithmic corrections in the spin-half Heisenberg chain

    Full text link
    Low temperature dynamics of the S=1/2 Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T_1 and 1/T_{2G} are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and \omega/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results.Comment: 4 pages, RevTex, 4 postscript figures in one fil

    Two-hole problem in the t-J model: A canonical transformation approach

    Full text link
    The t-J model in the spinless-fermion representation is studied. An effective Hamiltonian for the quasiparticles is derived using canonical transformation approach. It is shown that the rather simple form of the transformation generator allows to take into account effect of hole interaction with the short-range spin waves and to describe the single-hole groundstate. Obtained results are very close to ones of the self-consistent Born approximation. Further accounting for the long-range spin-wave interaction is possible on the perturbative basis. Both spin-wave exchange and an effective interaction due to minimization of the number of broken antiferromagnetic bonds are included in the effective quasiparticle interaction. Two-hole bound state problem is solved using Bethe-Salpeter equation. The only d-wave bound state is found to exist in the region of 1< (t/J) <5. Combined effect of the pairing interactions of both types is important to its formation. Discussion of the possible relation of the obtained results to the problem of superconductivity in real systems is presented.Comment: 19 pages, RevTeX, 12 postscript figure
    corecore