328 research outputs found
Redistribution of ions within the active layer and upper permafrost, Yamal, Russia
A landslide-affected slope was chosen to study the ionic migration in the active layer and upper portion of permafrost. The research was conducted in two stages, in 1994 and 2001. Several boreholes, in dry and wet environments of the shearing surface of a 1989-landslide, were drilled. A background borehole on an undisturbed site was sampled as well. Each sample, collected from the core, underwent a conventional chemical cation-anion analysis. The results showed desalinization of the active layer and upper permafrost, which occurred in 7 years. Different migration rates noted for various salts determine change of ionic composition from marine pattern to continental, because mobile ions are washed away by surface and subsurface runoff, while the less mobile ones are accumulating in the upper portion of the active layer due to capillary rise and at the active layer base on a geochemical barrier
Impedimetric determination of kanamycin in milk with aptasensor based on carbon blackβoligolactide composite
The determination of antibiotics in food is important due to their negative effect on human health related to antimicrobial resistance problem, renal toxicity, and allergic effects. We propose an impedimetric aptasensor for the determination of kanamycin A (KANA), which was assembled on the glassy carbon electrode by the deposition of carbon black in a chitosan matrix followed by carbodiimide binding of aminated aptamer mixed with oligolactide derivative of thiacalix[4]arene in a cone configuration. The assembling was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. In the presence of the KANA, the charge transfer resistance of the inner interface surprisingly decreased with the analyte concentration within 0.7 and 50 nM (limit of detection 0.3 nM). This was attributed to the partial shielding of the negative charge of the aptamer and of its support, a highly porous 3D structure of the surface layer caused by a macrocyclic core of the carrier. The use of electrostatic assembling in the presence of cationic polyelectrolyte decreased tenfold the detectable concentration of KANA. The aptasensor was successfully tested in the determination of KANA in spiked milk and yogurt with recoveries within 95% and 115%. Β© 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation,Β RSF: 16β13β000051/0419/20Funding: I.S. acknowledges financial support from the Russian Science Foundation (grant no. 16β13β00005) in the synthesis and application in the biosensor platform of the oligolactides bearing thiacalix[4]arene fragments. T.H. acknowledges funding from the European Unionβs Horizon 2020 Research and Innovation Program underthe Marie SklodowskaβCurie grant agreement no. 690898 and from the Science Grant Agency VEGA, project No.1/0419/20
Π ΠΠΠΠΠΠΠΠΠΠΠΠΠ‘ΠΠΠ ΠΠΠΠΠ’ΠΠΠ«Π ΠΠΠΠΠΠ’ΠΠΠ ΠΠ Π‘ΠΠΠΠ ΠβΠΠΠ‘Π’ΠΠΠ Π‘ΠΠΠΠ Π‘ΠΠΠΠ ΠΠ ΠΠ’ΠΠΠ
The Early Cambrian tectonomagmatic activation is manifested in the northeastern passive margin of the Siberian Craton within the area of the Olenek uplift, as well as in the Kharaulakh segment of the Verkhoyansk foldβ thrust belt that was thrusted onto the craton in the Mesozoic. In the Olenek uplift, igneous rocks occur as basite diβ atremes, small basalt covers, dolerite dykes and sills intruded into the overlying Upper Vendian carbonate sediments. Stratiform bodies of explosive breccias are present in basal sandstones at the bottom of the Lower Cambrian sediment section. According to the zirconβbased UβPb datings [Bowring et al., 1993], the age of explosive basite breccias samples from the Olenek uplift (543.9Β±0.24 Ma) correlates with the age of potashβrhyolites (534.6Β±0.5 Ma) from the basal Lower Cambrian conglomerates in the Kharaulakh uplift section. The geodynamic evolution of the northeastern marβ gin of the Siberian craton at the end of the Vendian and the beginning of the Cambrian periods is reflected not only in the magmatism, but also in the thicknesses and facial characteristics of the correlating sediments of the regional pasβ sive sea basins [Pelechaty et al., 1996]. The northern and eastern margins of the craton were subject to progressive uplifting at the end of the Vendian, which resulted in dewatering and paleokarsting. Uplifting was associated with the formation of siliceous clastic shelf sediments in the southern margin of the basin and the explosive and intrusive basite magmatic activations in the Olenek uplift and rhyolite bimodalβbasite magmatic activation in the Kharaulakh uplift. The observed VendianβCambrian stratigraphic relations and manifestations of the basite magmatism suggest that at the northeastern margin of the craton, the lithosphere was subject to stretching. The assumed rift volcanicβ sedimentary associations are thin and represent the southern, the most remote part of the shoulder of the rift deveβ loped (in presentβday coordinates) along the northern margin of the Siberian Craton. The chemical specificity of the Lower Cambrian basites and their mantle sources, the bimodal rhyoliteβbasalt magmatism, and the VendianβCambrian sedimentation history provide sufficient arguments to consider the Early Paleozoic rifting and the associated magmaβ tic activation as consequences of the plumeβlithosphere interaction in the northeastern Siberian Craton. The paleoreβ constructions [Sears, 2012; Khudoley et al., 2013] suggest that the main rifting events occurred due to the lithosphere breakup through the junction zone of the Siberian and North American cratons which existed in the Early Cambrian. It is also assumed that the breakup was accompanied by the formation of a large igneous province which relics are preβ sent in the basin complex of the Canadian Cordillera in North America, as well as in the Olenek and Kharaulakh uplifts. The Early Paleozoic rifting and magmatism may reflect the final phase of the disintegration of the Rodinia supercontiβ nent fragments.Π Π°Π½Π½Π΅ΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠ°Ρ ΡΠ΅ΠΊΡΠΎΠ½ΠΎΠΌΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²ΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠΎΡΠ²Π»Π΅Π½Π° Π½Π° ΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΏΠ°ΡΡΠΈΠ²Π½ΠΎΠΉ ΠΎΠΊΡΠ°ΠΈΠ½Π΅ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π° Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π½ΡΡΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π² Π₯Π°ΡΠ°ΡΠ»Π°Ρ
ΡΠΊΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ΅ ΡΠΎΡΠ»Π°Π½Π΄Π° ΠΠ΅ΡΡ
ΠΎΡΠ½ΡΠΊΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄ΡΠ°ΡΠΎβΠ½Π°Π΄Π²ΠΈΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ°, Π½Π°Π΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π½Π° ΠΊΡΠ°ΡΠΎΠ½ Π² ΠΌΠ΅Π·ΠΎΠ·ΠΎΠ΅. ΠΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠΌ ΠΏΠΎΠ΄Π½ΡΡΠΈΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ Π±Π°Π·ΠΈΡΠΎΠ²ΡΡ
ΡΡΡΠ±ΠΎΠΊ Π²Π·ΡΡΠ²Π°, Π½Π΅Π±ΠΎΠ»ΡΡΠΈΡ
ΠΏΠΎΠΊΡΠΎΠ²ΠΎΠ² Π±Π°Π·Π°Π»ΡΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π°Π΅ΠΊ ΠΈ ΡΠΈΠ»Π»ΠΎΠ² Π΄ΠΎΠ»Π΅ΡΠΈΡΠΎΠ², ΠΏΡΠΎΡΡΠ²Π°ΡΡΠΈΡ
ΠΈ ΠΏΠ΅ΡΠ΅ΠΊΡΡΠ²Π°ΡΡΠΈΡ
Π²Π΅ΡΡ
Π½Π΅Π²Π΅Π½Π΄ΡΠΊΠΈΠ΅ ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ° Π±Π°Π·Π°Π»ΡΠ½ΡΡ
ΠΏΠ΅ΡΡΠ°Π½ΠΈΠΊΠ°Ρ
Π² ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·ΡΠ΅Π·Π° Π½ΠΈΠΆΠ½Π΅ΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΡΠ°ΡΡΠΊΠ°ΠΌΠΈ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ ΡΡΡΠ°ΡΠΈΡΠΎΡΠΌΠ½ΡΠ΅ ΡΠ΅Π»Π° ΡΠΊΡΠΏΠ»ΠΎΠ·ΠΈΠ²Π½ΡΡ
Π±ΡΠ΅ΠΊΡΠΈΠΉ. ΠΠΎΠ·ΡΠ°ΡΡ ΡΠΊΡΠΏΠ»ΠΎΠ·ΠΈΠ²Π½ΡΡ
Π±ΡΠ΅ΠΊΡΠΈΠΉ ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π½ΡΡΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ UβPb ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎ ΡΠΈΡΠΊΠΎΠ½Π°ΠΌ [Bowring et al., 1993], ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ 543.9Β±0.24 ΠΌΠ»Π½ Π»Π΅Ρ ΠΈ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΠ΅ΡΡΡ Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠΎΠΌ Π³Π°Π»ΡΠΊΠΈ ΠΊΠ°Π»ΠΈΠ΅Π²ΡΡ
ΡΠΈΠΎΠ»ΠΈΡΠΎΠ² (534.6Β±0.5 ΠΌΠ»Π½ Π»Π΅Ρ) ΠΈΠ· Π±Π°Π·Π°Π»ΡΠ½ΡΡ
Π½ΠΈΠΆΠ½Π΅ΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΡ
ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΎΠ² Π² ΡΠ°Π·ΡΠ΅Π·Π΅ Π₯Π°ΡΠ°ΡΠ»Π°Ρ
ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π½ΡΡΠΈΡ. ΠΠ΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠ°ΠΈΠ½Ρ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π° Π² ΠΊΠΎΠ½ΡΠ΅ Π²Π΅Π½Π΄Π° ΠΈ Π½Π°ΡΠ°Π»Π΅ ΠΊΠ΅ΠΌΠ±ΡΠΈΡ ΠΎΡΡΠ°ΠΆΠ΅Π½Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌΠ΅, Π½ΠΎ ΠΈ Π² ΠΌΠΎΡΠ½ΠΎΡΡΡΡ
ΠΈ ΡΠ°ΡΠΈΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°Ρ
ΠΊΠΎΡΡΠ΅Π»ΡΡΠ½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΡΠΈΠ²Π½ΡΡ
ΠΌΠΎΡΡΠΊΠΈΡ
Π±Π°ΡΡΠ΅ΠΉΠ½ΠΎΠ² [Pelechaty et al., 1996]. Π ΠΊΠΎΠ½ΡΠ΅ Π²Π΅Π½Π΄Π° ΠΎΠ±ΡΠ°ΡΠ΅Π½Π½ΡΠ΅ ΠΊ ΡΠ΅Π²Π΅ΡΡ ΠΈ Π²ΠΎΡΡΠΎΠΊΡ Π²Π½Π΅ΡΠ½ΠΈΠ΅ ΡΠ°ΡΡΠΈ ΠΎΠΊΡΠ°ΠΈΠ½Ρ ΠΊΡΠ°ΡΠΎΠ½Π° ΠΈΡΠΏΡΡΠ°Π»ΠΈ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠ²Π½ΠΎΠ΅ Π²ΠΎΠ·Π΄ΡΠΌΠ°Π½ΠΈΠ΅, ΠΏΡΠΈΠ²Π΅Π΄ΡΠ΅Π΅ ΠΊ ΠΎΡΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°Π»Π΅ΠΎΠΊΠ°ΡΡΡΠ°. Π‘ ΠΏΠΎΠ΄Π½ΡΡΠΈΠ΅ΠΌ ΡΠ²ΡΠ·Π°Π½ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡΠ΅ΠΌΠ½Π΅ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Π»ΡΡΠΎΠ²ΡΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠ² Π² ΡΠΆΠ½ΠΎΠΉ ΠΎΠΊΡΠ°ΠΈΠ½Π΅ Π±Π°ΡΡΠ΅ΠΉΠ½Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΊΡΠΏΠ»ΠΎΠ·ΠΈΠ²Π½ΡΠΉ ΠΈ ΠΈΠ½ΡΡΡΠ·ΠΈΠ²Π½ΡΠΉ Π±Π°Π·ΠΈΡΠΎΠ²ΡΠΉ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌ Π½Π° ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠΌ ΠΏΠΎΠ΄Π½ΡΡΠΈΠΈ ΠΈ Π±ΠΈΠΌΠΎΠ΄Π°Π»ΡΠ½ΡΠΉ ΡΠΈΠΎΠ»ΠΈΡβΠ±Π°Π·ΠΈΡΠΎΠ²ΡΠΉ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌ Π½Π° Π₯Π°ΡΠ°ΡΠ»Π°Ρ
ΡΠΊΠΎΠΌ ΠΏΠΎΠ΄Π½ΡΡΠΈΠΈ. ΠΠ°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΠ΅ Π²Π΅Π½Π΄βΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΠ΅ ΡΡΡΠ°ΡΠΈΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π±Π°Π·ΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌΠ° ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π»ΠΈΡΠΎΡΡΠ΅ΡΠ° ΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠ°ΠΈΠ½Ρ ΠΊΡΠ°ΡΠΎΠ½Π° Π²ΠΎΠ²Π»Π΅ΠΊΠ°Π»Π°ΡΡ Π² ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠ½Π΅ΡΠ΅Π½Π½ΡΠ΅ ΠΊ ΡΠΈΡΡΠΎΠ²ΡΠΌ Π²ΡΠ»ΠΊΠ°Π½ΠΎΠ³Π΅Π½Π½ΠΎβΠΎΡΠ°Π΄ΠΎΡΠ½ΡΠ΅ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΌΠ°Π»ΠΎΠΌΠΎΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΆΠ½ΡΡ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄Π°Π»Π΅Π½Π½ΡΡ, ΡΠ°ΡΡΡ ΠΏΠ»Π΅ΡΠ° ΡΠΈΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ°Π·Π²ΠΈΠ²Π°Π»ΡΡ (Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°Ρ
) ΠΏΠΎ ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΌΡ ΠΊΡΠ°Ρ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π°. ΠΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° Π½ΠΈΠΆΠ½Π΅ΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΡ
Π±Π°Π·ΠΈΡΠΎΠ² ΠΈ ΠΈΡ
ΠΌΠ°Π½ΡΠΈΠΉΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², Π½Π°Π»ΠΈΡΠΈΠ΅ Π±ΠΈΠΌΠΎΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΎΠ»ΠΈΡβΠ±Π°Π·Π°Π»ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌΠ° Π² ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Ρ ΠΈΡΡΠΎΡΠΈΠ΅ΠΉ Π²Π΅Π½Π΄βΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ°Π΄ΠΊΠΎΠ½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠ°Π½Π½Π΅ΠΊΠ΅ΠΌΠ±ΡΠΈΠΉΡΠΊΠΈΠΉ ΡΠΈΡΡΠΎΠ³Π΅Π½Π΅Π· ΠΈ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΠΉ Ρ Π½ΠΈΠΌ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌ ΠΊΠ°ΠΊ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΏΠ»ΡΠΌβΠ»ΠΈΡΠΎΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΠΊΠ΅ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½Π°. Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠ°Π»Π΅ΠΎΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡΠΌΠΈ [Sears, 2012; Khudoley et al., 2013] ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΈΡΡΠΎΠ³Π΅Π½Π½ΡΠ΅ ΡΠΎΠ±ΡΡΠΈΡ Π±ΡΠ»ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π΅Π½Ρ Π»ΠΈΡΠΎΡΡΠ΅ΡΠ½ΡΠΌ ΡΠ°ΡΠΊΠΎΠ»ΠΎΠΌ, ΠΏΡΠΎΡΠ΅Π΄ΡΠΈΠΌ ΡΠ΅ΡΠ΅Π· Π·ΠΎΠ½Ρ ΡΠΎΡΠ»Π΅Π½Π΅Π½ΠΈΡ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠ³ΠΎ ΠΈ Π‘Π΅Π²Π΅ΡΠΎβΠΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΎΠ½ΠΎΠ², ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π²ΡΡΡ Π² ΡΠ°Π½Π½Π΅ΠΌ ΠΊΠ΅ΠΌΠ±ΡΠΈΠΈ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΡΠ°ΡΠΊΠΎΠ» ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΡΡΠΏΠ½ΠΎΠΉ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ²ΠΈΠ½ΡΠΈΠΈ, ΡΠ΅Π»ΠΈΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡ
ΡΠ°Π½ΠΈΠ»ΠΈΡΡ Π² Π±Π°ΡΡΠ΅ΠΉΠ½ΠΎΠ²ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°Ρ
ΠΊΠ°Π½Π°Π΄ΡΠΊΠΈΡ
ΠΠΎΡΠ΄ΠΈΠ»ΡΠ΅Ρ Π‘Π΅Π²Π΅ΡΠ½ΠΎΠΉ ΠΠΌΠ΅ΡΠΈΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΠ»Π΅Π½Π΅ΠΊΡΠΊΠΎΠ³ΠΎ ΠΈ Π₯Π°ΡΠ°ΡΠ»Π°Ρ
ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Π½ΡΡΠΈΠΉ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΠ°Π½Π½Π΅ΠΏΠ°Π»Π΅ΠΎΠ·ΠΎΠΉΡΠΊΠΈΠΉ ΡΠΈΡΡΠΎΠ³Π΅Π½Π΅Π· ΠΈ ΠΌΠ°Π³ΠΌΠ°ΡΠΈΠ·ΠΌ ΠΎΡΡΠ°ΠΆΠ°ΡΡ Π·Π°Π²Π΅ΡΡΠ°ΡΡΡΡ ΡΠ°Π·Ρ ΡΠ°ΡΠΏΠ°Π΄Π° ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠΏΠ΅ΡΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ° Π ΠΎΠ΄ΠΈΠ½ΠΈΡ
Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip
We show that a magnetic strip on top of a superconducting strip magnetized in
a specified direction may considerably enhance the critical current in the
sample. At fixed magnetization of the magnet we observed diode effect - the
value of the critical current depends on the direction of the transport
current. We explain these effects by a influence of the nonuniform magnetic
field induced by the magnet on the current distribution in the superconducting
strip. The experiment on a hybrid Nb/Co structure confirmed the predicted
variation of the critical current with a changing value of magnetization and
direction of the transport current.Comment: 6 pages, 7 figure
Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model
We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems
HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKΞ± kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKΞ± are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells
CATAMNESIS OF PATIENTS WITH INFANTILE CEREBRAL PALSY CITY OF SEVERSK
Purpose: To evaluate the catamnesis of 120 patients with spastic form of cerebral palsy.Materials and methods: It was studied obstetric-gynecological anamnesis and rehabilitation of 120 patients with spastic form of cerebral Β palsy of the closed administrative territorial entity Seversk.Results: The risk factors of patients with cerebral palsy in Seversk did not differ in comparison with the average data for the Russian Federation.Summary: The main cause of disability among the examined patients with cerebral palsy of Seversk city was an extremly low and very low body weight, combined with the evaluation onΒ Apgar scale 4-5 points and below
Π Π΅Π°ΠΊΡΠΈΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Ρ ΠΆΠ΅ΡΡΠΊΠΎΠΉ Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° Π½Π° ΡΠ΄Π°ΡΠ½ΡΡ Π²ΠΎΠ»Π½Ρ Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ
The article investigates the problem of hydro-elastic interaction of a weak shock wave with a rigid nosed rotation shell preloaded with axial forces. The shell is enclosed in a rigid parabolic screen, i.e. the impact of the end face and the shock wave diffraction are not considered. Liquid is regarded to be perfectly compressible. Its applied summing hydrodynamic pressure during complex interaction with the shell surface can be classified into the incident, reflected and radiated waves. The problem of hydro-elastic interaction of these shock fronts with a preloaded parabolic rigid nosed shell in a related setting is reduced to the solution of the wave equations of nonlinear system of equations for shell motion under particular initial and boundary conditions, in which the dimensionless displacement of this nose section under the impact of hydrodynamic forces is determined by integrating its motion equation. The equations, describing the dependences of nose section displacements on shock wave interaction time, take into account generalized hydrodynamic forces, including the second category directly related to the mass of the attached fluid. Determination of stress-strain state in case of interaction with the shock wave in the liquid of elastic rotation paraboloid in the form of the shell containing a rigid insertion in the nose section is reduced to the solution of a nonlinear equations system of shell motion considering the boundary conditions along fastenings at the end face of the shell and interface conditions of the shell and insertion. Dimensionless displacements of the nose section caused by hydrodynamic forces are defined by integrating the equations of motion under the initial conditions along insertion offsets in the axial directions.Π ΡΡΠ°ΡΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ Π·Π°Π΄Π°ΡΠ° Π³ΠΈΠ΄ΡΠΎΡΠΏΡΡΠ³ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»Π°Π±ΠΎΠΉ ΡΠ΄Π°ΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΎΡΠ΅Π²ΡΠΌΠΈ ΡΡΠΈΠ»ΠΈΡΠΌΠΈ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΎΠΉ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Ρ ΠΆΠ΅ΡΡΠΊΠΎΠΉ Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΡΡ. ΠΠ±ΠΎΠ»ΠΎΡΠΊΠ° Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π° Π² ΠΆΠ΅ΡΡΠΊΠΈΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΊΡΠ°Π½, ΡΠΎ Π΅ΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΡΡΠ° ΠΈ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΡ ΡΠ΄Π°ΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ Π½Π΅ ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ. ΠΠ΄Π΅Π°Π»ΡΠ½ΠΎ ΡΠΆΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ, ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π΅ΠΌΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΎ Π½Π° ΠΏΠ°Π΄Π°ΡΡΡΡ, ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΡΡ ΠΈ ΠΈΠ·Π»ΡΡΠ΅Π½Π½ΡΡ Π²ΠΎΠ»Π½Ρ. ΠΠ°Π΄Π°ΡΠ° Π³ΠΈΠ΄ΡΠΎΡΠΏΡΡΠ³ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΡΠ΄Π°ΡΠ½ΡΡ
ΡΡΠΎΠ½ΡΠΎΠ² Ρ Π½Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΎΠΉ, ΠΈΠΌΠ΅ΡΡΠ΅ΠΉ ΠΆΠ΅ΡΡΠΊΡΡ Π½ΠΎΡΠΎΠ²ΡΡ ΡΠ°ΡΡΡ, Π² ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠΉ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΠΎΠ»Π½ΠΎΠ²ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ ΠΏΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π½Π°ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ Π³ΡΠ°Π½ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, Π² ΠΊΠΎΡΠΎΡΡΡ
Π±Π΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠ» ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ ΡΠ΄Π°ΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ, ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΠ΅ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΠ»Ρ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π²ΡΠΎΡΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ, Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΌΠ°ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎ-Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΡΠ΄Π°ΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΡΠΏΡΡΠ³ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΎΠΈΠ΄Π° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ Π² Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΆΠ΅ΡΡΠΊΡΡ Π²ΡΡΠ°Π²ΠΊΡ, ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ Π³ΡΠ°Π½ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΏΠΎ Π·Π°ΠΊΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡΠΌ Π² ΡΠΎΡΡΠ΅ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΠΎΠ»ΠΎΡΠΊΠΈ ΠΈ Π²ΡΡΠ°Π²ΠΊΠΈ. ΠΠ΅Π·ΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠ» ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡΠΌ Π²ΡΡΠ°Π²ΠΊΠΈ Π² ΠΎΡΠ΅Π²ΡΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ
- β¦