328 research outputs found

    Redistribution of ions within the active layer and upper permafrost, Yamal, Russia

    Get PDF
    A landslide-affected slope was chosen to study the ionic migration in the active layer and upper portion of permafrost. The research was conducted in two stages, in 1994 and 2001. Several boreholes, in dry and wet environments of the shearing surface of a 1989-landslide, were drilled. A background borehole on an undisturbed site was sampled as well. Each sample, collected from the core, underwent a conventional chemical cation-anion analysis. The results showed desalinization of the active layer and upper permafrost, which occurred in 7 years. Different migration rates noted for various salts determine change of ionic composition from marine pattern to continental, because mobile ions are washed away by surface and subsurface runoff, while the less mobile ones are accumulating in the upper portion of the active layer due to capillary rise and at the active layer base on a geochemical barrier

    Impedimetric determination of kanamycin in milk with aptasensor based on carbon black‐oligolactide composite

    Get PDF
    The determination of antibiotics in food is important due to their negative effect on human health related to antimicrobial resistance problem, renal toxicity, and allergic effects. We propose an impedimetric aptasensor for the determination of kanamycin A (KANA), which was assembled on the glassy carbon electrode by the deposition of carbon black in a chitosan matrix followed by carbodiimide binding of aminated aptamer mixed with oligolactide derivative of thiacalix[4]arene in a cone configuration. The assembling was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. In the presence of the KANA, the charge transfer resistance of the inner interface surprisingly decreased with the analyte concentration within 0.7 and 50 nM (limit of detection 0.3 nM). This was attributed to the partial shielding of the negative charge of the aptamer and of its support, a highly porous 3D structure of the surface layer caused by a macrocyclic core of the carrier. The use of electrostatic assembling in the presence of cationic polyelectrolyte decreased tenfold the detectable concentration of KANA. The aptasensor was successfully tested in the determination of KANA in spiked milk and yogurt with recoveries within 95% and 115%. Β© 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation,Β RSF: 16‐13‐000051/0419/20Funding: I.S. acknowledges financial support from the Russian Science Foundation (grant no. 16‐13‐00005) in the synthesis and application in the biosensor platform of the oligolactides bearing thiacalix[4]arene fragments. T.H. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Program underthe Marie Sklodowska‐Curie grant agreement no. 690898 and from the Science Grant Agency VEGA, project No.1/0419/20

    Π ΠΠΠΠ•ΠŸΠΠ›Π•ΠžΠ—ΠžΠ™Π‘ΠšΠ˜Π™ Π‘ΠΠ—Π˜Π’ΠžΠ’Π«Π™ ΠœΠΠ“ΠœΠΠ’Π˜Π—Πœ НА Π‘Π•Π’Π•Π Πžβ€Π’ΠžΠ‘Π’ΠžΠšΠ• Π‘Π˜Π‘Π˜Π Π‘ΠšΠžΠ“Πž КРАВОНА

    Get PDF
    The Early Cambrian tectonomagmatic activation is manifested in the northeastern passive margin of the Siberian Craton within the area of the Olenek uplift, as well as in the Kharaulakh segment of the Verkhoyansk fold‐ thrust belt that was thrusted onto the craton in the Mesozoic. In the Olenek uplift, igneous rocks occur as basite di‐ atremes, small basalt covers, dolerite dykes and sills intruded into the overlying Upper Vendian carbonate sediments. Stratiform bodies of explosive breccias are present in basal sandstones at the bottom of the Lower Cambrian sediment section. According to the zircon‐based U‐Pb datings [Bowring et al., 1993], the age of explosive basite breccias samples from the Olenek uplift (543.9Β±0.24 Ma) correlates with the age of potash‐rhyolites (534.6Β±0.5 Ma) from the basal Lower Cambrian conglomerates in the Kharaulakh uplift section. The geodynamic evolution of the northeastern mar‐ gin of the Siberian craton at the end of the Vendian and the beginning of the Cambrian periods is reflected not only in the magmatism, but also in the thicknesses and facial characteristics of the correlating sediments of the regional pas‐ sive sea basins [Pelechaty et al., 1996]. The northern and eastern margins of the craton were subject to progressive uplifting at the end of the Vendian, which resulted in dewatering and paleokarsting. Uplifting was associated with the formation of siliceous clastic shelf sediments in the southern margin of the basin and the explosive and intrusive basite magmatic activations in the Olenek uplift and rhyolite bimodal‐basite magmatic activation in the Kharaulakh uplift. The observed Vendian‐Cambrian stratigraphic relations and manifestations of the basite magmatism suggest that at the northeastern margin of the craton, the lithosphere was subject to stretching. The assumed rift volcanic‐ sedimentary associations are thin and represent the southern, the most remote part of the shoulder of the rift deve‐ loped (in present‐day coordinates) along the northern margin of the Siberian Craton. The chemical specificity of the Lower Cambrian basites and their mantle sources, the bimodal rhyolite‐basalt magmatism, and the Vendian‐Cambrian sedimentation history provide sufficient arguments to consider the Early Paleozoic rifting and the associated magma‐ tic activation as consequences of the plume–lithosphere interaction in the northeastern Siberian Craton. The paleore‐ constructions [Sears, 2012; Khudoley et al., 2013] suggest that the main rifting events occurred due to the lithosphere breakup through the junction zone of the Siberian and North American cratons which existed in the Early Cambrian. It is also assumed that the breakup was accompanied by the formation of a large igneous province which relics are pre‐ sent in the basin complex of the Canadian Cordillera in North America, as well as in the Olenek and Kharaulakh uplifts. The Early Paleozoic rifting and magmatism may reflect the final phase of the disintegration of the Rodinia superconti‐ nent fragments.РаннСкСмбрийская тСктономагматичСская активизация проявлСна Π½Π° сСвСро‐восточной пассивной ΠΎΠΊΡ€Π°ΠΈΠ½Π΅ Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π° Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ОлСнСкского поднятия, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π₯араулахском сСгмСнтС Ρ„ΠΎΡ€Π»Π°Π½Π΄Π° ВСрхоянского складчато‐надвигового пояса, Π½Π°Π΄Π²ΠΈΠ½ΡƒΡ‚ΠΎΠ³ΠΎ Π½Π° ΠΊΡ€Π°Ρ‚ΠΎΠ½ Π² ΠΌΠ΅Π·ΠΎΠ·ΠΎΠ΅. ΠœΠ°Π³ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ образования Π½Π° ОлСнСкском поднятии Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² Π²ΠΈΠ΄Π΅ Π±Π°Π·ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±ΠΎΠΊ Π²Π·Ρ€Ρ‹Π²Π°, Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΏΠΎΠΊΡ€ΠΎΠ²ΠΎΠ² Π±Π°Π·Π°Π»ΡŒΡ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π΅ΠΊ ΠΈ силлов Π΄ΠΎΠ»Π΅Ρ€ΠΈΡ‚ΠΎΠ², ΠΏΡ€ΠΎΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΈ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… вСрхнСвСндскиС ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹Π΅ отлоТСния. На Π±Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ… пСсчаниках Π² основании Ρ€Π°Π·Ρ€Π΅Π·Π° ниТнСкСмбрийских ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ участками ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ стратиформныС Ρ‚Π΅Π»Π° эксплозивных Π±Ρ€Π΅ΠΊΡ‡ΠΈΠΉ. Возраст эксплозивных Π±Ρ€Π΅ΠΊΡ‡ΠΈΠΉ ОлСнСкского поднятия, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ U‐Pb ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎ Ρ†ΠΈΡ€ΠΊΠΎΠ½Π°ΠΌ [Bowring et al., 1993], ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 543.9Β±0.24 ΠΌΠ»Π½ Π»Π΅Ρ‚ ΠΈ коррСлируСтся с возрастом гальки ΠΊΠ°Π»ΠΈΠ΅Π²Ρ‹Ρ… Ρ€ΠΈΠΎΠ»ΠΈΡ‚ΠΎΠ² (534.6Β±0.5 ΠΌΠ»Π½ Π»Π΅Ρ‚) ΠΈΠ· Π±Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ… ниТнСкСмбрийских ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΎΠ² Π² Ρ€Π°Π·Ρ€Π΅Π·Π΅ Π₯араулахского поднятия. ГСодинамичСская ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ сСвСро‐восточной ΠΎΠΊΡ€Π°ΠΈΠ½Ρ‹ Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π° Π² ΠΊΠΎΠ½Ρ†Π΅ Π²Π΅Π½Π΄Π° ΠΈ Π½Π°Ρ‡Π°Π»Π΅ кСмбрия ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌΠ΅, Π½ΠΎ ΠΈ Π² мощностях ΠΈ Ρ„Π°Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… характСристиках коррСлятных ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… пассивных морских бассСйнов [Pelechaty et al., 1996]. Π’ ΠΊΠΎΠ½Ρ†Π΅ Π²Π΅Π½Π΄Π° ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΊ сСвСру ΠΈ востоку внСшниС части ΠΎΠΊΡ€Π°ΠΈΠ½Ρ‹ ΠΊΡ€Π°Ρ‚ΠΎΠ½Π° испытали прогрСссивноС Π²ΠΎΠ·Π΄Ρ‹ΠΌΠ°Π½ΠΈΠ΅, ΠΏΡ€ΠΈΠ²Π΅Π΄ΡˆΠ΅Π΅ ΠΊ ΠΎΡΡƒΡˆΠ΅Π½ΠΈΡŽ ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ палСокарста. Π‘ поднятиСм связано ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ крСмнСкластичСских ΡˆΠ΅Π»ΡŒΡ„ΠΎΠ²Ρ‹Ρ… осадков Π² юТной ΠΎΠΊΡ€Π°ΠΈΠ½Π΅ бассСйна, Π° Ρ‚Π°ΠΊΠΆΠ΅ эксплозивный ΠΈ ΠΈΠ½Ρ‚Ρ€ΡƒΠ·ΠΈΠ²Π½Ρ‹ΠΉ Π±Π°Π·ΠΈΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌ Π½Π° ОлСнСкском поднятии ΠΈ Π±ΠΈΠΌΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΉ риолит‐базитовый ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌ Π½Π° Π₯араулахском поднятии. ΠΠ°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Π΅ вСнд‐кСмбрийскиС стратиграфичСскиС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΈ проявлСния Π±Π°Π·ΠΈΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌΠ° ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ литосфСра сСвСро‐восточной ΠΎΠΊΡ€Π°ΠΈΠ½Ρ‹ ΠΊΡ€Π°Ρ‚ΠΎΠ½Π° вовлСкалась Π² растяТСниС. ΠžΡ‚Π½Π΅ΡΠ΅Π½Π½Ρ‹Π΅ ΠΊ Ρ€ΠΈΡ„Ρ‚ΠΎΠ²Ρ‹ΠΌ вулканогСнно‐осадочныС ассоциации ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ°Π»ΠΎΠΌΠΎΡ‰Π½Ρ‹ΠΌΠΈ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΡŽΠΆΠ½ΡƒΡŽ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡƒΠ΄Π°Π»Π΅Π½Π½ΡƒΡŽ, Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠ»Π΅Ρ‡Π° Ρ€ΠΈΡ„Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ развивался (Π² соврСмСнных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…) ΠΏΠΎ сСвСрному ΠΊΡ€Π°ΡŽ Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π°. ВСщСствСнная спСцифика ниТнСкСмбрийских Π±Π°Π·ΠΈΡ‚ΠΎΠ² ΠΈ ΠΈΡ… ΠΌΠ°Π½Ρ‚ΠΈΠΉΠ½Ρ‹Ρ… источников, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ бимодального Ρ€ΠΈΠΎΠ»ΠΈΡ‚β€Π±Π°Π·Π°Π»ΡŒΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌΠ° Π² совокупности с историСй вСнд‐кСмбрийского осадконакоплСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ достаточным основаниСм, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ раннСкСмбрийский Ρ€ΠΈΡ„Ρ‚ΠΎΠ³Π΅Π½Π΅Π· ΠΈ сопряТСнный с Π½ΠΈΠΌ ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌ ΠΊΠ°ΠΊ слСдствиС ΠΏΠ»ΡŽΠΌβ€Π»ΠΈΡ‚ΠΎΡΡ„Π΅Ρ€Π½ΠΎΠ³ΠΎ взаимодСйствия Π½Π° сСвСро‐востокС Бибирского ΠΊΡ€Π°Ρ‚ΠΎΠ½Π°. Π’ соотвСтствии с палСорСконструкциями [Sears, 2012; Khudoley et al., 2013] ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ основныС Ρ€ΠΈΡ„Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ события Π±Ρ‹Π»ΠΈ ΠΏΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Ρ‹ литосфСрным расколом, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· Π·ΠΎΠ½Ρƒ сочлСнСния Бибирского ΠΈ БСвСро‐АмСриканского ΠΊΡ€Π°Ρ‚ΠΎΠ½ΠΎΠ², ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π²ΡˆΡƒΡŽ Π² Ρ€Π°Π½Π½Π΅ΠΌ ΠΊΠ΅ΠΌΠ±Ρ€ΠΈΠΈ. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ раскол сопровоТдался ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΉ магматичСской ΠΏΡ€ΠΎΠ²ΠΈΠ½Ρ†ΠΈΠΈ, Ρ€Π΅Π»ΠΈΠΊΡ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠΎΡ…Ρ€Π°Π½ΠΈΠ»ΠΈΡΡŒ Π² бассСйновых комплСксах канадских ΠšΠΎΡ€Π΄ΠΈΠ»ΡŒΠ΅Ρ€ Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠΉ АмСрики, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ОлСнСкского ΠΈ Π₯араулахского поднятий. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, раннСпалСозойский Ρ€ΠΈΡ„Ρ‚ΠΎΠ³Π΅Π½Π΅Π· ΠΈ ΠΌΠ°Π³ΠΌΠ°Ρ‚ΠΈΠ·ΠΌ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π·Π°Π²Π΅Ρ€ΡˆΠ°ΡŽΡ‰ΡƒΡŽ Ρ„Π°Π·Ρƒ распада Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² супСрконтинСнта Родиния

    Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip

    Full text link
    We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect - the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.Comment: 6 pages, 7 figure

    Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    Get PDF
    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKΞ± kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKΞ± are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    CATAMNESIS OF PATIENTS WITH INFANTILE CEREBRAL PALSY CITY OF SEVERSK

    Get PDF
    Purpose: To evaluate the catamnesis of 120 patients with spastic form of cerebral palsy.Materials and methods: It was studied obstetric-gynecological anamnesis and rehabilitation of 120 patients with spastic form of cerebral Β palsy of the closed administrative territorial entity Seversk.Results: The risk factors of patients with cerebral palsy in Seversk did not differ in comparison with the average data for the Russian Federation.Summary: The main cause of disability among the examined patients with cerebral palsy of Seversk city was an extremly low and very low body weight, combined with the evaluation onΒ  Apgar scale 4-5 points and below

    РСакция ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ вращСния с ТСсткой носовой Ρ‡Π°ΡΡ‚ΡŒΡŽ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π½Π° ΡƒΠ΄Π°Ρ€Π½ΡƒΡŽ Π²ΠΎΠ»Π½Ρƒ Π² Тидкости

    Get PDF
    The article investigates the problem of hydro-elastic interaction of a weak shock wave with a rigid nosed rotation shell preloaded with axial forces. The shell is enclosed in a rigid parabolic screen, i.e. the impact of the end face and the shock wave diffraction are not considered. Liquid is regarded to be perfectly compressible. Its applied summing hydrodynamic pressure during complex interaction with the shell surface can be classified into the incident, reflected and radiated waves. The problem of hydro-elastic interaction of these shock fronts with a preloaded parabolic rigid nosed shell in a related setting is reduced to the solution of the wave equations of nonlinear system of equations for shell motion under particular initial and boundary conditions, in which the dimensionless displacement of this nose section under the impact of hydrodynamic forces is determined by integrating its motion equation. The equations, describing the dependences of nose section displacements on shock wave interaction time, take into account generalized hydrodynamic forces, including the second category directly related to the mass of the attached fluid. Determination of stress-strain state in case of interaction with the shock wave in the liquid of elastic rotation paraboloid in the form of the shell containing a rigid insertion in the nose section is reduced to the solution of a nonlinear equations system of shell motion considering the boundary conditions along fastenings at the end face of the shell and interface conditions of the shell and insertion. Dimensionless displacements of the nose section caused by hydrodynamic forces are defined by integrating the equations of motion under the initial conditions along insertion offsets in the axial directions.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ исслСдуСтся Π·Π°Π΄Π°Ρ‡Π° Π³ΠΈΠ΄Ρ€ΠΎΡƒΠΏΡ€ΡƒΠ³ΠΎΠ³ΠΎ взаимодСйствия слабой ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠΉ осСвыми усилиями ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΎΠΉ вращСния с ТСсткой носовой Ρ‡Π°ΡΡ‚ΡŒΡŽ. ΠžΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ° Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π° Π² ТСсткий параболичСский экран, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ влияниС Ρ‚ΠΎΡ€Ρ†Π° ΠΈ дифракция ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ. ИдСально сТимаСмой считаСтся ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ, ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΠΎΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ΅ гидродинамичСскоС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΈ комплСксном взаимодСйствии с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΎ Π½Π° ΠΏΠ°Π΄Π°ΡŽΡ‰ΡƒΡŽ, ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΡƒΡŽ ΠΈ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ Π²ΠΎΠ»Π½Ρ‹. Π—Π°Π΄Π°Ρ‡Π° Π³ΠΈΠ΄Ρ€ΠΎΡƒΠΏΡ€ΡƒΠ³ΠΎΠ³ΠΎ взаимодСйствия ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ΡƒΠ΄Π°Ρ€Π½Ρ‹Ρ… Ρ„Ρ€ΠΎΠ½Ρ‚ΠΎΠ² с Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠΉ параболичСской ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΎΠΉ, ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ ΠΆΠ΅ΡΡ‚ΠΊΡƒΡŽ Π½ΠΎΡΠΎΠ²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ, Π² связанной постановкС сводится ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условиях, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ΅ смСщСниС этой носовой части ΠΏΠΎΠ΄ дСйствиСм гидродинамичСских сил опрСдСляСтся ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΅Π΅ уравнСния двиТСния. УравнСния, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ зависимости ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ носовой части ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ взаимодСйствия с ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹Π΅ гидродинамичСскиС силы, Π² Ρ‚ΠΎΠΌ числС Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ, нСпосрСдствСнно связанныС с массой присоСдинСнной Тидкости. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ состояния ΠΏΡ€ΠΈ взаимодСйствии с ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ Π² Тидкости ΡƒΠΏΡ€ΡƒΠ³ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΈΠ΄Π° вращСния Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ, содСрТащСй Π² носовой части ΠΆΠ΅ΡΡ‚ΠΊΡƒΡŽ вставку, сводится ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ систСмы Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условий ΠΏΠΎ закрСплСниям Π² Ρ‚ΠΎΡ€Ρ†Π΅ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ ΠΈ условий сопряТСния ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ ΠΈ вставки. Π‘Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ пСрСмСщСния носовой части ΠΏΠΎΠ΄ дСйствиСм гидродинамичСских сил ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΏΡ€ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… условиях ΠΏΠΎ смСщСниям вставки Π² осСвых направлСниях
    • …
    corecore