6,483 research outputs found

    Phase Behavior of Melts of Diblock-Copolymers with One Charged Block

    Get PDF
    In this work we investigated the phase behavior of melts of block-copolymers with one charged block by means of dissipative particle dynamics with explicit electrostatic interactions. We assumed that all the Flory-Huggins \c{hi} parameters were equal to 0 and showed that the charge correlation attraction solely can cause microphase separation with long-range order; a phase diagram was constructed by varying the volume fraction of the uncharged block and the electrostatic interaction parameter {\lambda}. The obtained phase diagram was compared to the phase diagram of corresponding neutral diblock-copolymers. Surprisingly, the differences between these phase diagrams are rather subtle; the same phases are observed, and the positions of the ODT points are similar if the {\lambda}-parameter is considered as an "effective" \c{hi}-parameter. Next, we studied the position of the ODT for lamellar structure depending on the chain length N. It turned out that while for the uncharged diblock-copolymer the product \c{hi}crN was almost independent of N, for the diblock-copolymers with one charged block we observed a significant increase in {\lambda}crN upon increasing N. It can be attributed to the fact that the counterion entropy prevents the formation of ordered structures. This was supported by studying the ODT in diblock-copolymers with charged blocks and counterions cross-linked to the charged monomer units. The ODT for such systems was observed at significantly lower values of {\lambda} with the difference being more pronounced at longer chain lengths N. The diffusion of counterions in the obtained ordered structures was studied and compared to the case of a system with the same number of charged groups but homogeneous structure; the diffusion coefficient in a direction in the lamellar plane was found to be higher than in any direction in homogeneous structure

    One-loop energy-momentum tensor in QED with electric-like background

    Full text link
    We have obtained nonperturbative one-loop expressions for the mean energy-momentum tensor and current density of Dirac's field on a constant electric-like background. One of the goals of this calculation is to give a consistent description of back-reaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contributions are related to the Heisenberg-Euler Lagrangian. Then, we study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the back-reaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68) corrected, results unchange

    Consistency restrictions on maximal electric field strength in QFT

    Full text link
    QFT with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2eET^2, one can see that the leading contributions to the energy are due to the creation of paticles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreactionComment: 7 pages; version accepted for publication in Phys. Rev. Lett.; added one ref. and some comment

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde

    Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology

    Get PDF
    We consider a D-dimensional cosmological model describing an evolution of Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component perfect fluid source (n > m > 1). We find characteristic vectors, related to the matter constants in the barotropic equations of state for fluid components of all factor spaces. We show that, in the case where we can interpret these vectors as the root vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the classical open m-body Toda chain. Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for solving this system, we integrate the Einstein equations for the model and present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure

    QED in external field with space-time uniform invariants: Exact solutions

    Get PDF
    We study exact solutions of Dirac and Klein-Gordon equations and Green functions in d-dimensional QED and in an external electromagnetic field with constant and homogeneous field invariants. The cases of even and odd dimensions are considered separately, they are essentially different. We direct attention to the asymmetry of the quasienergy spectrum, which appears in odd dimensions. The in and out classification of the exact solutions as well as the completeness and orthogonality relations is strictly proven. Different Green functions in the form of sums over the exact solutions are constructed. The Fock-Schwinger proper time integral representations of these Green functions are found. As physical applications we consider the calculations of different quantum effects related to the vacuum instability in the external field. For example, we present mean values of particles created from the vacuum, the probability of the vacuum remaining a vacuum, the effective action, and the expectation values of the current and energy-momentum tensor

    Quantum scalar field in FRW Universe with constant electromagnetic background

    Get PDF
    We discuss massive scalar field with conformal coupling in Friedmann-Robertson-Walker (FRW) Universe of special type with constant electromagnetic field. Treating an external gravitational-electromagnetic background exactly, at first time the proper-time representations for out-in, in-in, and out-out scalar Green functions are explicitly constructed as proper-time integrals over the corresponding (complex) contours. The vacuum-to-vacuum transition amplitudes and number of created particles are found and vacuum instability is discussed. The mean values of the current and energy-momentum tensor are evaluated, and different approximations for them are investigated. The back reaction of the particles created to the electromagnetic field is estimated in different regimes. The connection between proper-time method and effective action is outlined. The effective action in scalar QED in weakly-curved FRW Universe (De Sitter space) with weak constant electromagnetic field is found as derivative expansion over curvature and electromagnetic field strength. Possible further applications of the results are briefly mentioned.Comment: 38 pages, LaTe
    corecore