151 research outputs found
Integral pattern of bench stability on all adjacent rock of open-pit mine in solid rocks
The article presents the integrated image of bench stability across the entire adjacent pit area on the basis of a probabilistic method to predict the azimuthangular parameters of cracks that limit the potential prisms of the pit bench collapse that are put in the final position, as well as those planned to be set to the limiting contour in the form of a software component as the part of the specialized geoinformation GIS system "Stability
A Method and a Device for Diagnostics of the Functional State of Peripheral Vessels of the Upper Limbs
The article suggests a method and a device for diagnostics of the functional state of peripheral vessels of the upper limbs, which provide identification of angiospastic disorders with a lower probability of falsenegative result, allowing thereby the quality of diagnostics to be improved. The suggested approach is based on combined application of laser Doppler flowmetry and contact thermometry during an occlusion test. The obtained results can be used in various fields of medicine for the development of multifunctional noninvasive diagnostic systems for the diagnosis and prevention of diseases associated with changes in the functional state of peripheral vessels
Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs
The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated.<br/
Novel wearable VCSEL-based blood perfusion sensor
A wearable 850 nm VCSEL-based blood perfusion sensor operating on the principles of laser Doppler flowmetry (LDF) and Dynamic Light Scattering (DLS) has been developed and tested. The sensitivity of the sensor to changes in skin blood perfusion has been demonstrated
Assessment of the Size of Rocks in Benchs and Lumpiness of the Blasted Mountain Mass on Pits with Use of Gis Geomix
On the basis of natural researches in career of SC Kovdorsky MCP and computer processing of their results in GIS GEOMIX was developed the photometric method of assessment of blocks (sizes) of breeds in the slope of ledges of a pit, the existing version of this method intended for assessment of lumpiness of mountain mass is improve
The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence
This article presents the results of the study of the pressure applied on optical diagnostic probes as a significant factor affecting the results of measurements. During stepwise increasing and decreasing of local pressure on skin we conducted measurements using the methods of laser Doppler flowmetry and fluorescence spectroscopy. It was found out that pressure on optical probe has sufficient impact on skin microcirculation to affect registered fluorescence intensity. Data obtained in this study are of interest for design and development of diagnostic technologies for wearable devices. This data will also inform further investigation into issues of compensation of blood absorption influence on fluorescence spectrum, allowing increased accuracy and reproducibility of measurements by fluorescence spectroscopy methods in optical diagnosis
Blood flow oscillations as a signature of microvascular abnormalities
Laser Doppler flowmetry (LDF) was utilized for blood ow measurements. Wavelet analysis was used to identify spectral characteristics of the LDF signal in patients with rheumatic diseases and diabetes mellitus. Baseline measurements were applied for both pathological groups. Blood flow oscillations analyses were performed by means of the wavelet transform. Higher baseline perfusion was observed in both pathological groups in comparison to controls. Differences in the spectral properties between the groups studied were revealed. The results obtained demonstrated that spectral properties of the LDF signal collected in basal conditions may be the signature of microvasculature functional state
Evaluation of microvascular disturbances in rheumatic diseases by analysis of skin blood flow oscillations
Laser Doppler flowmetry (LDF), tissue reflectance oximetry (TRO) and pulse oximetry (PO) and cold pressor test (CPT) were used to assess the microcirculation parameters and the activation of regulatory mechanisms. LDF and TRO samples wavelet transform in the frequency bands 0.01-2 Hz was used to evaluate microvascular disturbances in rheumatic diseases and to assess the vascular involvement in the pathological process. The spectral components of LDF and TRO signals associated with endothelial, adrenergic, intrinsic smooth muscle, respiratory and cardiac activities were analyzed. Significant difference between healthy and rheumatology subjects was identified in perfusion parameters. Spectral analysis of the LDF signal revealed significant difference between two group of high (<0.1 Hz) frequency pulsations. Based on the analysed of the perfusion and amplitudes oscillation in the frequency band the decision rule for detection microvascular disturbances were synthesized. The perfusion parameter and amplitude oscillation associated with cardiac activities included in the decision rule. Based on the measured parameters and the result of wavelet transform LDF- and TRO-signals the parameters for detection of complications associated with microvascular disturbances and their possible causes were proposed
Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test
Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent's spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes
Combined use of laser Doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels
We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system
- …