60 research outputs found

    Optimal control in heterogeneous domain decomposition methods

    Get PDF
    Some new domain decomposition methods (DDM) based on optimal control approach are introduced for the coupling of first- and second-order equations on overlapping subdomains. Several cost functionals and control functions are proposed. Uniqueness and existence results are proved for the coupled problem and the convergence of iterative processes is analyze

    Colloidal gelation with variable attraction energy

    Get PDF
    We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension dfd_{f} as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension dfd_{f} modulates the time evolution of cluster size, lag time and gelation time and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df=3d_{f}=3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition

    Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods

    Get PDF
    In this chapter we introduce a combined parameter and model reduction methodology and present its application to the efficient numerical estimation of a pressure drop in a set of deformed carotids. The aim is to simulate a wide range of possible occlusions after the bifurcation of the carotid. A parametric description of the admissible deformations, based on radial basis functions interpolation, is introduced. Since the parameter space may be very large, the first step in the combined reduction technique is to look for active subspaces in order to reduce the parameter space dimension. Then, we rely on model order reduction methods over the lower dimensional parameter subspace, based on a POD-Galerkin approach, to further reduce the required computational effort and enhance computational efficiency

    Laws of change of quality of ore discharged from below caved rock

    No full text
    • …
    corecore