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Optimal control in heterogeneous domain
decomposition methods

V. I. AGOSHKOV∗, P. GERVASIO†, and A. QUARTERONI‡

Abstract — Some new domain decomposition methods (DDM) based on optimal control approach are
introduced for the coupling of first- and second-order equations on overlapping subdomains. Several
cost functionals and control functions are proposed. Uniqueness and existence results are proved for
the coupled problem and the convergence of iterative processes is analyzed.

Domain decomposition methods are effective methods of contemporary numeri-
cal mathematics for solving boundary value problems [4, 6–10]. To construct these
methods, the optimal control approaches can be applied [1, 2, 4, 6 – 8]. These ap-
proaches are used to formulate domain decomposition methods for overlapping and
nonoverlapping (disjoint) subdomain decomposition [6, 7], as well as for equations
of different orders in each subdomain [3, 4, 10].

In this paper we analyse some DDM based on the optimal control approaches.
We also propose some new algorithms for solving equations of different types in
subdomains. Furthermore, we consider the application of our approaches to formu-
lating and studying DDM for systems of equations. The main aim of this paper is to
consider DDM for overlapping subdomain decompositions.

The analysis of algorithms considered in the sequel is based on the methodol-
ogy proposed in [1]. This methodology is primarily based on the theory of operator
equations and applications of adjoint operators. The proofs of some statements in
this paper are given in [3]. To derive these proofs and analyse the domain decom-
position algorithms we use the results of the theory of PDE (the Cauchy problems
results, the Poincare problem, problems with oblique derivatives). We also show
that the results related to the DDM theory are consequences of the theory of opera-
tor equations and PDE.
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Figure 1. The first possible decomposition.
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Figure 2. The second possible decomposition.
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Figure 3. The third possible decomposition.



Optimal control in heterogeneous domain decomposition methods 231

1. NOTATIONS, ASSUMPTIONS AND PRELIMINARY STATEMENTS

Let Ω be a two-dimensional domain with the boundary Γ ≡ ∂Ω, which is assumed
to be Lipschitz continuous and piecewise of class C(2), Ω = Ω ∪ Γ. We use the
following notations (see Figs. 1–3 for some examples): Ω1 and Ω2 are two subsets
of Ω such that Ω = Ω1 ∪ Ω2,Ω1 ∩ Ω2 �= ∅,Ω12 ≡ Ω1 ∩ Ω2,Γk = ∂Ωk ∩ Γ,Sk =
∂Ωk \ Γk,k = 1,2. We consider two situations: when Γ1 ∩ Γ2 �= ∅ (see the case
in Fig. 1) and Γ1 ∩Γ2 = ∅ (the cases in Figs. 2, 3).We assume that ∂Ω1,∂Ω2 are
piecewise of class C(2) and Lipschitz ontinuous.

Let n = (n1,n2) be the outward unit normal on Γ, τττ = (n2,−n1) the tan-
gent vector; b = (b1,b2) be a vector with smooth components. We define: bk

n ≡
b · n ≡ ∑2

i=1 bini on ∂Ωk, bk
n = (bk

n)+ − (bk
n)−, (bk

n)+ = (|bk
n|+ bk

n)/2, (bk
n)− =

(|bk
n|−bk

n)/2, k = 1,2. We will use the real spaces L2(Ω),L2(Ωk),L2(Γ), . . . ,L2(Γk),
k = 1,2, as well as the following spaces:

L2(S−k ) :=
{

u ∈ L2(Sk) : ‖u‖L2(S−k ) =
(∫

Sk

(bk
n)

−|u|2dΓ
)1/2

< ∞
}

, k = 1,2

L2(S+
k ) :=

{
u ∈ L2(Sk) : ‖u‖L2(S+

k ) =
(∫

Sk

(bk
n)

+|u|2dΓ
)1/2

< ∞
}

, k = 1,2

L2(Γ−
k ) :=

{
u ∈ L2(Γk) : ‖u‖L2(Γ−

k ) =
(∫

Γk

(bk
n)

−|u|2dΓ
)1/2

< ∞
}

, k = 1,2

L2(Γ+
k ) :=

{
u ∈ L2(Γk) : ‖u‖L2(Γ+

k ) =
(∫

Γk

(bk
n)

+|u|2dΓ
)1/2

< ∞
}

, k = 1,2

where S−k = Sk ∩ {(bk
n)− �= 0}, S+

k = Sk ∩ {(bk
n)+ �= 0}, Γ−

k = Γk ∩ {(bk
n)− �= 0},

Γ+
k = Γk ∩{(bk

n)+ �= 0}. Let us consider the differential operators

L1u1 ≡ div(bu1)+b0u1 in Ω1

L2u2 ≡−ν∆u2 + div(bu2)+b0u2 in Ω2
(1.1)

where ν = const > 0, b and b0 are such that (b0 + (divb)/2) � µ0 = const > 0
∀x ∈ Ω. Each operator Lk is defined on smooth functions in Ωk, k = 1,2. The op-
erator L(0)

k , k = 1,2, is defined by (1.1) on smooth functions which satisfies the
homogeneous boundary conditions on Γk. We consider the following problem: find
u1, u2, λ1, λ2 such that

L1u1 = f in Ω1, (b1
n)

−u1 = (b1
n)

−g on Γ1, (b1
n)

−u1 = (b1
n)

−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2

u1 = u2 in Ω12

(1.2)

where f is a given function defined in Ω, while the function g is defined on ∂Ω.
Hereafter we assume that all b, f0, f , g in (1.2) are smooth in Ω.
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Problem (1.2) is an ‘exact controllability problem’ with two ‘controls’ λ1, λ2.
Let us study some uniqueness and existence results for (1.2), which are used later.

If {u1, u2, λ1, λ2} is a smooth solution of (1.2) we can consider the equation
L1u1 = f1 on ∂Ω12 to find

bn
∂u1

∂n
+bτ

∂u1

∂τ
+ µu1 = f on ∂Ω12 (1.3)

where µ ≡ b0 +divb, bn = b ·n, bτ = b ·τττ and n is the outward unit normal to ∂Ω12.
Let us state the first proposition.

Proposition 1.1 [3]. Problem (1.2) has no solution in the general case, i.e.,
without introducing specific restriction to the data of the problem.

We introduce the following types of assumptions:
I. 


Ω12 =
m⋃

k=1

Ω(k)
12 ∆Γ =

m⋃
k=1

∆Γ(k), ∆Γ(k) ⊂ ∂Ω(k)
12 , m < ∞

meas(∆Γ(k)) > 0, bn �= 0 on ∆Γ(k) (see Fig.1)
(1.4)

where Ω(k)
12 = Ω12 ∩Ωk.

II.


Ω12 is finite, µ = b0 + divb � 0 on ∂Ω12, µ �≡ 0 on ∂Ω12

the direction b at any point of ∂Ω12 makes an acute angle
with the outward normal to ∂Ω12.

(1.5)

III.


Ω12 =
m⋃

k=1

Ω(k)
12 , bn �= 0 on ∂Ω12,

µ
bn

− 1
2

∂
∂τ

(
bτ

bn

)
> 0 on ∂Ω12

where
∂

∂τ
is the derivative along ∂Ω12.

(1.6)

The following proposition is valid.

Proposition 1.2 [3]. If problem (1.2) has a solution and one of the assumptions
I–III is valid, this solution is unique.

The assertions of Propositions 1.1, 1.2 will be used in the next section while
investigating a domain decomposition algorithm based on optimal control. Note
also that analogous assertions can be proved for the case Ω ⊂ R

n , n > 2, and for a
system of equations of type (1.2). The results of the Cauchy problems, the problems
of the oblique derivative, and the Poincare problem are still useful for proving these
assertions.
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2. ANALYSIS OF DDM WITH TWO CONTROL FUNCTIONS

Let us consider the weak statement of (1.2): find {u1, u2, λ1, λ2} such that

L1u1 = f in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2 (2.1)

inf
λ1,λ2

J0(u1,u2)

where

J0(u1,u2) =
1
2

∫
Ω

χ12(u1(λ )−u2(λ ))2dΩ

function χ12 is the characteristic function of Ω12, and λ = (λ1,λ2) is the vector of
‘controls’ λ1, λ2.

Consider the following iterative method: for given λ0, solve

L1um
1 = f in Ω1, (b1

n)−um
1 = (b1

n)−g on Γ1, (b1
n)−um

1 = (b1
n)−λ m

1 on S1

L2um
2 = f in Ω2, um

2 = g on Γ2, um
2 = λ m

2 on S2 (2.2)

λ m+1 = λ m − γmJ′0(u
m
1 ,um

2 ), m = 0,1, . . .

where {γm} are suitable relaxation parameters to be chosen according to conver-
gence criteria [1, 9–13].

Algorithm (2.2) is in fact a domain decomposition method for solving (1.2).
In this section we analyse problem (2.1) and the convergence of the approximate
solution obtained by iterative process (2.2).

The variational equations (‘optimality conditions’) corresponding to (2.1) read
as follows:

L1u1 = f in Ω1, (b1
n)

−u1 = (b1
n)

−g on Γ1, (b1
n)

−u1 = (b1
n)

−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2

L(0)∗
1 q1 = χ12(u1 −u2) in Ω1, (b1

n)
+q1 = 0 on Γ1, (b1

n)
+q1 = 0 on S1

L(0)∗
2 q2 = χ12(u1 −u2) in Ω2, q2 = 0 on ∂Ω2 (2.3)

(b1
n)

−q1 = 0 on S1, ν
∂q2

∂n
= 0 on S2
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while the iterative process (2.2) can be rewritten as: for a given λ0

L1um
1 = f in Ω1, (b1

n)−um
1 = (b1

n)−g on Γ1, (b1
n)−um

1 = (b1
n)−λ m

1 on S1

L2um
2 = f in Ω2, um

2 = g on Γ2, um
2 = λ m

2 on S2

L(0)∗
1 qm

1 = χ12(um
1 −um

2 ) in Ω1, (b1
n)

+qm
1 = 0 on ∂Ω1 (2.4)

L(0)∗
2 qm

2 = χ12(um
1 −um

2 ) in Ω2, qm
2 = 0 on ∂Ω2

(b1
n)

−λ m+1
1 = (b1

n)
−λ m

1 − γm(b1
n)

−qm
1 on S1, λ m+1

2 = λ m
2 − γmν

∂qm
2

∂n
on S2.

Proposition 2.1 [3]. (1) Problem (2.1) (resp. (2.3)) has no solution in the gen-
eral case.
(2) If problem (2.1) (resp. (2.3)) has a solution, in the general case infλ J0(u1,u2) >
0, i.e., u1 �= u2 in Ω12.
(3) If one of the assumptions I–III is satisfied and the problem (2.1) (resp. (2.3)) has
a solution, this solution is unique.
(4) If the problem (2.1) (resp. (2.3)) has a unique solution and the iterative process
(2.2) (resp. (2.4)) is convergent, generally

lim
m→∞

‖um
1 −um

2 ‖L2(Ω12) � const > 0 (2.5)

i.e., um
1 ,um

2 do not generally concide in Ω12 as m → ∞.

From Proposition 2.1 we can draw the following conclusion: in order for the
property limk→∞ ‖uk

1 − uk
2‖ = 0 to hold, statement (2.1) has to be modified. One

possibility, which consists in introducing a third control (in addition to λ1, λ2), will
be investigated in the next section.

Remark 2.1. We can study the ‘regularized problem’ (instead of (2.1)):

L1u1 = f in Ω1, (b1
n)

−u1 = (b1
n)

−g on Γ1, (b1
n)

−u1 = (b1
n)

−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2 (2.6)

inf
λ1,λ2

1
2

(
α
∫

S1

(b1
n)

−λ 2
1 dΓ+ α

∫
S2

λ 2
2 dΓ

)
+ J0(u1,u2), α � 0.

If α > 0, this problem has the unique solution uk(α), λk(α), k = 1,2. The associated
iterative process (2.2) converges: um

k (α) → uk(α), λ m
k (α) → λk(α) for k = 1,2 as

m → ∞, where {uk},{λk} is the solution of (2.6). However, we cannot prove that
uk(α) → uk and λk(α) → λk for k = 1,2 as α → 0. In fact, if problem (1.2) has
some solutions, {uk(α)}, {λk(α)} converge to the solution with the minimal norm
of {λk}. However, if problem (1.2) (or (2.1)) has no solution, we cannot expect
the convergence of the iterative process in the general case or {uk(α)}, {λk(α)}
converge to a pseudosolution.
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3. DDM WITH THREE CONTROL FUNCTIONS

In this section we propose and analyse a domain decomposition algorithm to solve
problem (1.2) making use of three control functions.

Let ω be a smooth function in Ω such that 0 � ω(x) � 1 in Ω, ω = 0 in Ω\Ω12,
ω > 0 in Ω12. Let us consider the problem: find uk, λk, k = 1,2, v ∈ L2(Ω12) such
that

L1u1 = f + ωv in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1

(3.1)

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2 (3.2)

u1 = u2 in Ω12. (3.3)

The optimal control problem associated with (3.1)–(3.3) reads: find uk = uk(α),
λk = λk(α), k = 1,2, v = v(α) which satisfy (3.1), (3.2) and, moreover,

inf
λ1,λ2,v

Jα(u1,u2,λ1,λ2,v) (3.4)

where

Jα(u1,u2,λ1,λ2,v) =
1
2

(
α
∫

S1

(b1
n)

−λ 2
1 dΓ+ α

∫
S2

λ 2
2 dΓ

+α
∫

Ω
ωv2dΩ+

∫
Ω

χ12(u1 −u2)2dΩ
)

and α =const� 0 is the regularization parameter.
If α = 0, (3.1), (3.2) and (3.4) are the weak statement of problem (3.1)–(3.3).

In the sequel, we identify L2(Ω12) with the subspace L(0)
2 (Ωk) = {u : u ∈ L2(Ωk),

u ≡ 0 in Ωk\Ω12}. The multiplication of u ∈ L2(Ω12) by χ12 will be considered as
the prolongation by zero of u onto Ωk\Ω12.

The minimization requirement (3.4) yields the set of optimality equations:

L(0)∗
1 q1 = χ12(u1 −u2) in Ω1, (b1

n)
+q1 = 0 on ∂Ω1

L(0)∗
2 q2 = χ12(u1 −u2) in Ω2, q2 = 0 on ∂Ω2

α(b1
n)

−λ1 +(b1
n)

−q1 = 0 on S1, αλ2 + ν
∂q2

∂n
= 0 on S2

αωv+ ωq1 = 0 in Ω1.

(3.5)

We consider the iterative process to solve (3.1), (3.2) and (3.5): for any given
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λ 0
1 , λ 0

2 , v0 for m � 1 we look for λm+1
1 ,λ m+1

2 ,vm+1 such that

L1um
1 = f + ωvm in Ω1, (b1

n)−um
1 = (b1

n)−g on Γ1

(b1
n)−um

1 = (b1
n)−λ m

1 on S1

L2um
2 = f in Ω2, um

2 = g on Γ2, um
2 = λ m

2 on S2

L(0)∗
1 qm

1 = χ12(um
1 −um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1

L(0)∗
2 qm

2 = χ12(um
1 −um

2 ) in Ω2, qm
2 = 0 on ∂Ω2 (3.6)

(b1
n)−λ m+1

1 = (b1
n)−λ m

1 − γm(α(b1
n)−λ m

1 +(b1
n)−qm

1 ) on S1

λ m+1
2 = λ m

2 − γm

(
αλ m

2 + ν
∂qm

2

∂n

)
on S2

vm+1 = vm − γm(αvm +qm
1 ) in Ω12, m = 0,1, . . . .

The parameters {γm} have to be chosen to make these equations converge.
Hereafter we use the notion of ‘dense solvability’ for problem (3.1)–(3.3) (see

[5]).

Definition 3.1. We say that problem (3.1)–(3.3) is densely solvable (or the prop-
erty of dense solvability holds for (3.1)–(3.3)) if for any ε1 > 0 there are functions
λ̃1, λ̃2, ṽ such that the problems

L1ũ1 = f + ω ṽ in Ω1, (b1
n)−ũ1 = (b1

n)−g on Γ1, (b1
n)−ũ1 = (b1

n)−λ̃1 on S1

L2ũ2 = f in Ω2, ũ2 = g on Γ2, ũ2 = λ̃2 on S2 (3.7)

have the solutions ũ1, ũ2 such that

‖ũ1 − ũ2‖L2(Ω12) � ε1. (3.8)

(This is also referred to as a property of ‘approximate’ controllability for problem
(3.1)–(3.3).)

Let us now consider problem (3.1)–(3.3). Should two solutions {u(1)
1 , u(1)

2 , λ (1)
1 ,

λ (1)
2 , v(1)} and {u(2)

1 , u(2)
2 , λ (2)

1 , λ (2)
2 , v(2)} exist, their difference u1 = u(1)

1 − u(2)
1 ,

. . . , v = v(1) − v(2) would satisfy the equations

L1u1 = ωv in Ω1, (b1
n)

−u1 = 0 on Γ1, (b1
n)

−u1 = (b1
n)

−λ1 on S1

L2u2 = 0 in Ω2, u2 = 0 on Γ2, u2 = λ2 on S2

u1 = u2, in Ω12.

(3.9)

From (3.9) for u1 ≡ u2 ≡ u in Ω12 we obtain the boundary value problem

L2u = 0 in Ω12

L1u = bn
∂u
∂n

+bτ
∂u
∂τ

+ µu = ωv = 0 on ∂Ω12.
(3.10)
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If assumptions (1.4) are valid, we have:

L2u = 0 in Ω12, u =
∂u
∂n

= 0 on ∆Γ(k), k = 1, . . . ,m

u = 0 in Ω12 by the uniqueness continuation theorem. Hence, v = 0, λk = 0, uk = 0
in Ωk, k = 1,2, i.e. the solutions of (3.1)–(3.3) are unique.

The same conclusion holds when assumption (1.5) or (1.6) rather than (1.4) is
valid.

The uniqueness result is valid for problem (3.1), (3.2), (3.5) (equivalently (3.1),
(3.2), (3.4)) for any α � 0. Let us study the existence of solutions of this problem.
If α > 0, existence and uniqueness are proven by invoking the results of [1].

Now, we consider the case α = 0. First, we prove the ‘dense solvability’ of
(3.1)–(3.3). For this purpose let us consider the homogeneous adjoint problem cor-
responding to (3.1)–(3.3): find q1, q2, w such that

L(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1

L(0)∗
2 q2 = χ12w in Ω2, q2 = 0 on ∂Ω2

(b1
n)

−q1 = 0 on S1, ν
∂q2

∂n
= 0 on S2, ωq1 = 0 in Ω1.

(3.11)

The last relation yields: q1 = 0 in Ω12. Now, using the equations in Ω1 and Ω2, we
also conclude that w = 0 in Ω12, qk = 0 in Ωk, k = 1,2. So the adjoint problem (3.11)
admits only a trivial solution. If we apply the theory of operator equations [1, 5], we
have the dense solvability of (3.1)–(3.3). Besides, the solutions of (3.1), (3.2), (3.5)
for sufficiently small α > 0 can be chosen as ‘regularized approximations’ of the
solutions of (3.1)–(3.3) such that (see [1]):

L1u1 = f + ωv in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1

(b1
n)

−u1 = (b1
n)

−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2 (3.12)

J0(u1,u2) =
1
2
‖χ12(u1 −u2)‖2

L2(Ω) � ε1

and
‖χ12(u1 −u2)‖2

L2(Ω) → 0 as α → +0 (3.13)

where uk = uk(α), λk = λk(α), k = 1,2, v = v(α) are the solution of (3.1), (3.2),
(3.5).

Remark 3.1. Using (3.13) and the results from the theory of PDE, it is easy to
obtain some additional convergence results such as

‖b ·∇q1‖L2(Ω1) +‖q1‖L2(Ω1) +‖q2‖L2(Ω2) → 0, ‖q2‖H1(Ω2) → 0 as α → +0
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and

‖q2‖H2(Ω2) → 0 as α → +0 if Ω2 is convex or ∂Ω2 is smooth.

Let us formulate the assertion.

Proposition 3.1. For problems (3.1)–(3.3) and (3.1), (3.2), (3.5) the following
statements hold true:

(1) Problem (3.1)–(3.3) is densely solvable.

(2) For any α > 0 problem (3.1), (3.2), (3.5) (equivalently, (3.1), (3.2), (3.4)) has
the unique solution uk = uk(α), λk = λk(α), k = 1,2, v = v(α) and

‖χ12(u1 −u2)‖L2(Ω) → 0 as α → +0.

(3) If problem (3.1)–(3.3) has the unique solution u(0)
k ,λ (0)

k , k = 1,2, v(0),

uk(α) → u(0)
k , λk(α) → λ (0)

k , k = 1,2, v(α) → v(0) as α → +0.

(4) If {um
k },{λ m

k }, k = 1,2, vm are calculated by the convergent iterative process
(3.6), for any ε2 > 0 there are a small α > 0 and a sufficiently large m = M �
1 such that ‖χ12(um

1 − um
2 )‖L2(Ω) � ε2, i.e., {um

k },{λ m
k }, k = 1,2, vm can be

considered as an approximate solution of (3.1)–(3.3).

(5) If (3.1)–(3.3) has the unique solution u(0)
k ,λ (0)

k , k = 1,2, v(0),

um
k → u(0)

k , λ m
k → λ (0)

k , k = 1,2, vm → v(0) as α → 0 and m → ∞

and for a sufficiently small α > 0 and large m = M � 1 the functions umk ,λ m
k ,vm

can be chosen as approximations of u(0)
k ,λ (0)

k , v(0), k = 1,2.

Statements (1), (2) have been formulated earlier. The proof of (3)–(5) follows
from (1), (2), the convergence of (3.6) and the general results of the theory of ill-
posed problems [1, 11, 12].

Remark 3.2. We call attention to the following point: if ‖u1 −u2‖L2(Ω12) → 0,
α →+0 or ‖um

1 −um
2 ‖L2(Ω12) → 0 as α → +0 and m → ∞, we do not expect the con-

vergence of both v(α) and vm(α) to zero as α →+0 and m → ∞ in the general case
(because in this case it can be in contradiction with the results from Propositions 1.1
and 1.2).
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4. DOMAIN DECOMPOSITION ALGORITHMS
WITH ‘MIXED-TYPE’ CONTROLS

Now we study domain decomposition algorithms based on optimal control ap-
proaches with different types of controls on S−1 ,S−2 and in Ω12. We consider the
following optimal control problem: find u1,u2,λ1,λ2,v such that

L1u1 = f + ωv in Ω1, (b1
n)

−u1 = (b1
n)

−g on Γ1

(4.1)
(b1

n)−u1 = (b1
n)−λ1 on S1

L2u2 = f in Ω2, u2 = g on Γ2,
(

ν
∂u2

∂n
+(b2

n)
−u2

)
= (b2

n)
−λ2 on S2 (4.2)

inf
λ1,λ2,v

Jα(u1,u2,λ1,λ2,v) (4.3)

where ω and Jα have been defined in the previous section.
The variational equations correspondig to (4.3) are

L(0)∗
1 q1 = χ12(u1 −u2) in Ω1, (b1

n)
+q1 = 0 on ∂Ω1

L(0)∗
2 q2 = χ12(u1 −u2) in Ω2, q2 = 0 on Γ2

(4.4)(
ν

∂q2

∂n
+(b2

n)
+q2

)
= 0 on S2

α(b1
n)

−λ1 +(b1
n)

−q1 = 0 on S1, α(b2
n)

−λ2 +(b2
n)

−q2 = 0 on S2

αωv+ ωq1 = 0 on Ω1.

The iterative process that we propose to solve (4.1), (4.2), (4.4) is: for any given
λ 0

1 , λ 0
2 ,

L1um
1 = f + ωvm in Ω1, (b1

n)
−um

1 = (b1
n)

−g on Γ1

(b1
n)

−um
1 = (b1

n)
−λ m

1 on S1

L2um
2 = f in Ω2, um

2 = g,
(

ν
∂um

2

∂n
+(b2

n)
−um

2

)
= (b2

n)
−λ m

2 on S2

L(0)∗
1 qm

1 = χ12(um
1 −um

2 ) in Ω1, (b1
n)

+qm
1 = 0 on ∂Ω1

L(0)∗
2 qm

2 = χ12(um
1 −um

2 ) in Ω2, qm
2 = 0 on Γ2

(
ν

∂qm
2

∂n
+(b2

n)
+qm

2

)
= 0 on S2

(b1
n)−λ m+1

1 = (b1
n)−λ m

1 − γm(α(b1
n)−λ m

1 +(b1
n)−qm

1 ) on S1

(b2
n)−λ m+1

2 = (b2
n)−λ m

2 − γm(α(b2
n)−qm

2 +(b2
n)−qm

2 ) on S2

ωvm+1 = ωvm − γm(αωvm + ωqm
1 ) in Ω1, m = 0,1, . . . .

(4.5)
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To study the existence of the solution (when α = 0, uniqueness for problem
(4.1)–(4.3) follows from that of (3.1)–(3.3)) let us consider the adjoint problem

L(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1

L(0)∗
2 q2 = χ12w in Ω2, q2 = 0 on Γ2,

(
ν

∂q2

∂n
+(b2

n)
+q2

)
= 0 on S2 (4.6)

(b1
n)−q1 = 0 on S1, (b2

n)−q2 = 0 on S2, ωq1 = 0 in Ω1.

The latter relation implies that q1 = 0 in Ω1. Therefore, w = 0 in Ω12. The function
q2 satisfies the following equations:

L(0)∗
2 q2 = 0 in Ω2, q2 = 0 on Γ2

(
ν

∂q2

∂n
+(b2

n)
+q2

)
= 0 on S2, (b2

n)
−q2 = 0 on S2

and (as meas(S−2 ) > 0)

L(0)∗
2 q2 = 0 in Ω2, q2 =

∂q2

∂n
= 0 on S−2 .

Hence, if meas(S−2 ) > 0, then q2 = 0 in Ω2, problem (4.6) has a trivial solution and
we conclude that the boundary value problem (3.1)–(3.3) is densely solvable.

Thus, we obtain the assertion.

Proposition 4.1. If meas(S−2 ) > 0, the assertions of Proposition 3.1 hold true
for problem (4.1)–(4.3) (instead of (3.1), (3.2), (3.4)) and for process (4.5) (instead
of (3.6)).

5. DOMAIN DECOMPOSITION ALGORITHMS FOR SYSTEMS
OF EQUATIONS

In this section we generalize the above approach to the case of heterogeneous sys-
tems of equations. We pay attention to the coefficient ν1 which can be equal to zero
in some subdomain of Ω1 or everywhere in Ω1. In the following we assume that

Ω12 =
⋃m

k=1 Ω(k)
12 , where each subdomain Ω(k)

12 is convex or has a smooth boundary

∂Ω(k)
12 .

5.1. Let us consider the boundary value problem: find uk = (uk,1,uk,2), λλλ k =
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(λk,1,λk,2), k = 1,2, and v = (v1,v2) such that

−(∇ · (ν1∇))u1 +(∇ ·b)u1 +B0u1 = f+ ωv in Ω1(
ν1

∂u1

∂n
+(b1

n)
−u1

)
= (b1

n)
−g on Γ1

(
ν1

∂u1

∂n
+(b1

n)
−u1

)
= (b1

n)
−λλλ 1 on S1 (5.1)

−(∇ · (ν2∇))u2 +(∇ ·b)u2 +B0u2 = f in Ω2(
ν2

∂u2

∂n
+(b2

n)
−u2

)
= (b2

n)
−λλλ 2 on S2, u2 = 0 on Γ2

u1 = u2 in Ω12

where b = (b1,b2), {(bk
n)−},{(bk

n)+},ω are defined as in the previous sections,

f = ( f1, f2), g = (g1,g2) are given vector functions, B0 = {b(0)
i j } is a 2× 2 matrix

which is assumed to be positive definite (but not necessarily symmetric). We assume
that there exist two constants µ0, C0 > 0:

2

∑
i, j=1

b(0)
i j ξiξ j � C0|ξξξ |2,

2

∑
i, j=1

b(0)
i j ξiξ j +

(∇ ·b)
2

2

∑
i=1

ξ 2
i � µ0|ξξξ |2 ∀ξξξ ∈ R

2 ∀x ∈ Ω.

The coefficients ν1,ν2 are bounded and ν1 � 0 in Ω1, ν2 � const > 0 in Ω2 and
we assume all given data in (5.1) to be smooth.

5.2. To formulate the weak statement of (5.1) we introduce the real Hilbert
spaces:

H0,k ≡ [L2(Ωk)]2 ≡ H∗
0,k, k = 1,2, H12 ≡ [L2(Ω12)]2 ≡ H∗

12

Xk =
{

uk = (uk,1,uk,2) : uk ∈ H0,k,

‖uk‖k =
(∫

Ωk

(νk|∇uk|2 + |(b ·∇)uk|2 + |uk|2)dΩ

+
∫

∂Ωk

(bk
n)

+|uk|2dΓ
)1/2

< ∞
}

, k = 1,2

X(0)
2 = {uk ∈ X2 : u2 = 0 on Γ2}

L2(S
p
k ) =

{
λλλ k : ‖λλλ k‖L2(S

p
k ) =

(∫
Sk

(bk
n)

p|λλλ k|2dΓ
)1/2

< ∞
}

L2(Γp
k ) =

{
gk : ‖gk‖L2(Γp

k ) =
(∫

Γk

(bk
n)

p|gk|2dΓ
)1/2

< ∞
}

, p = −,+, k = 1,2.

The spaces L2(S−k ),L2(S+
k ),L2(Γ−

k ),L2(Γ+
k ) are identified with their dual spaces.

Note that we do not identify Xk with X∗
k . Thus, we have: Xk ⊂ H0,k ≡ H∗

0,k ⊂ X∗
k ,
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k = 1,2. In the sequel, the functions of H12 are extended by zero to include Ωk\Ω12
and the multiplication of u ∈ H12 by χ12 is considered as the trivial continuation of
u to Ωk\Ω12. We identify H12 with the subspace (k = 1,2)

H(0)
0,k =

{
u ∈ H0,k : u ≡ 0 in Ωk\Ω12, ‖u‖

H(0)
0,k(Ω)

= ‖u‖H12 = ‖u‖[L2(Ω12)]2

}
.

To formulate (5.1) in the weak form we multiply the equation in Ω1 by û1 ∈ X1 in
H0,1, the equation in Ω2 by û2 ∈ X(0)

2 in H0,2. After integration by parts we obtain

the following problem: find u1 ∈ X1,u2 ∈ X(0)
2 ,λλλ k ∈ L2(S−k ), k = 1,2, and v ∈ H12

such that

a1(u1, û1) = (f, û1)H0,1 +(ωv, û1)H0,1 +
∫
S1

(b1
n)

−λλλ 1 · û1dΓ

+
∫
Γ1

(b1
n)

−g · û1dΓ ∀û1 ∈ X(0)
1

a2(u2, û2) = (f, û2)H0,2 +
∫
S2

(b2
n)

−λλλ 2 · û2dΓ ∀ û2 ∈ X(0)
2

χ12u1 = χ12u2 a.e. in Ω12

(5.2)

where (uk, ûk)H0,k ≡ (uk, ûk)[L2(Ωk)]2 and

ak(uk, ûk) =
∫
Ωk

(νk∇uk,∇ûk −uk · (b,∇)ûk +(B0uk) · ûk)dΩ

+
∫

∂Ωk

(bk
n)

+uk · ûkdΓ, k = 1,2.

Note that∫

∂Ω2

(b2
n)

+u2 · û2dΓ ≡
∫
S2

(bk
n)

+u2 · û2dΓ, u2 = 0, û2 = 0 on Γ2.

If ν1 ≡ 0 in Ω1,

a1(u1, û1) =
∫

Ω1

(−u1 · (b,∇)û1 +(B0u1) · û1)dΩ +
∫

∂Ω1

(b1
n)

+u1 · û1dΓ.

If ν1 = 0 in Ω1\Ω12, we have

a1(u1, û1) =
∫

Ω1\Ω12

(−u1 · (b,∇)û1 +(B0u) · û1)dΩ

+
∫

Ω12

(ν1∇u1 ·∇û1 −u1 · (b,∇)û1 +(B0u) · û1)dΩ+
∫

∂Ω1

(b1
n)

+u1 · û1dΓ.
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Let us define the following ‘direct’ and ‘adjoint’ operators:

L1 : X1 → X∗
1, (L1u1, û1)H0,1 ≡ a1(u1, û1), u1 ∈ X1 ∀û1 ∈ X1

L2 : X(0)
2 → X(0)∗

2 , (L2u2, û2)H0,2 ≡ a2(u2, û2), u2 ∈ X(0)
2 ∀û2 ∈ X(0)

2

L∗
1 : X1 → X∗

1, (û1,L∗
1u1)H0,1 ≡ a1(û1,u1), u1 ∈ X1 ∀û1 ∈ X1

L∗
2 : X(0)

2 → X(0)∗
2 , (û2,L∗

2u2)X0,2 ≡ a2(û2,u2), u2 ∈ X(0)
2 ∀u2 ∈ X(0)

2

B1 : L2(S−1 ) → X∗
1, (B1λλλ 1, û)H0,1 ≡

∫
S1

(b1
n)

−λλλ 1 · û1dΓ, λλλ 1 ∈ L2(S−1 ) ∀û1 ∈ X1

B2 : L2(S−2 ) → X(0)∗
2 , (B2λλλ 2, û)H0,2 ≡

∫
S2

(b2
n)

−λλλ 2 · û2dΓ, λλλ 2 ∈ L2(S−2 ) ∀u2 ∈ X(0)
2

B1,g : L2(Γ−
1 ) → X∗

1, (B1,gg, û)H0,1 ≡
∫
Γ1

(b1
n)

−g · û1dΓ ∀û1 ∈ X1.

Now problem (5.2) can be rewritten in the operator form as follows:

L1u1 = f+ ωv+B1λλλ 1 +B1,gg in X∗
1

L2u2 = f+B2λλλ 2 in X(0)∗
2

λ12u1 = χ12u2 a. e. in Ω12.

(5.3)

Note that the latter relation and the equation J0(u1,u2)≡‖χ12(u1−u2)‖2
(L2(Ω))2/2 =

0 are equivalent.

5.3. Consider the optimal control problem: find u1 ∈X1,u2 ∈X(0)
2 , λλλ 2 ∈L2(S−k ),

k = 1,2 and v ∈ H12 such that

L1u1 = f+ ωv+B1λλλ 1 +B1,gg (5.4)

L2u2 = f+B2λλλ 2 (5.5)
inf

λλλ 1,λλλ 2,v
Jα(u1,u2,λλλ 1,λλλ 2,v) (5.6)

where

Jα(u1,u2,λλλ 1,λλλ 2,v) =
1
2

(
α
∫

S1

(b1
n)

−|λλλ 1|2dΓ+ α
∫

S2

(b2
n)

−|λλλ 2|2dΓ

+α
∫

Ω ω |v|2dΓ+
∫

Ω
χ12(u1 −u2)2dΩ

)
, α = const � 0.

If α = 0, (5.4)–(5.6) is the weak statement of (5.3).
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The system of variational equations corresponding to (5.4)–(5.6) reads

a1(u1, û1) = (f, û1)H0,1 +
∫
S1

(b1
n)

−λλλ 1 · û1dΓ+
∫
Γ1

(b1
n)

−g · û1dΓ ∀û1 ∈ X1

a2(u2, û2) = (f, û2)H0,2 +
∫
S2

(b2
n)

−λλλ 2 · û2dΓ ∀û2 ∈ X(0)
2

a1(q̂1,q1) = (χ12(u1 −u2), q̂1)H0,1 ∀q̂1 ∈ X1

a2(q̂2,q2) = (χ12(u1 −u2), q̂2)H0,2 ∀q̂2 ∈ X(0)
2

α(b1
n)

−λλλ 1 +(b1
n)

−q1 = 0 a. e. on S1

α(b2
n)−λλλ 2 +(b2

n)−q2 = 0 a. e. on S2

αωv+ ωq1 = 0 a. e. in Ω1.

(5.7)

Proposition 5.1 [3]. (1) If ν1,ν2 =const in Ω12, ν1 �= ν2 and one of assumptions
(1.4), (1.5) or (1.6) with µ ≡ B0 +(divb) · I is satisfied, if problem (5.7) for α = 0
has a solution, this solution is unique.
(2) For any α > 0, problem (5.7) has the unique solution uk ≡ uk(α), λλλ k ≡
λλλ k(α), k = 1,2, v ≡ v(α).
(3) Problem (5.3) is densely solvable and there holds: ‖χ12(u1(α)−u2(α))‖H12 →
0, α → +0.

If problem (5.3) has the unique solution u(0)
1 ,u(0)

2 ,λλλ (0)
1 ,λλλ (0)

2 ,v(0), we have uk(α) →
u(0)

k , λλλ k(α) → λλλ (0)
k , ωv(α) → ωv(0), k = 1,2.

Let us consider the following iterative process to solve (5.4)–(5.6) approxi-
mately: given λλλ 0

1,λλλ
0
2,v

0, we solve

L1um
1 = f+ ωvm +B1λλλ m

1 +B1,gg

L2um
2 = f+B2λλλ m

2 (5.8)

zm+1 = zm − γmJ′α(um
1 ,um

2 ,λλλ m
1 ,λλλ m

2 ,vm), m = 0,1, . . .

where zm ≡ (λλλ m
1 ,λλλ m

2 ,vm) is the vector of controls and J′α is the gradient of Jα . Using
the adjoint equations, the third equation yields

L∗
1qm

1 = χ12(um
1 −um

2 )

L∗
2qm

2 = χ12(um
1 −um

2 )

(b1
n)

−λλλ m+1
1 = (b1

n)
−λλλ m

1 − γm(α(b1
n)

−λλλ m
1 +(b1

n)
−qm

1 ) a. e. on S1

(b2
n)−λλλ m+1

2 = (b2
n)−λλλ m

2 − γm(α(b2
n)−λλλ m

2 +(b2
n)−qm

2 ) a. e. on S2

ωvm+1 = ωvm − γm(αωvm + ωqm
1 ) a. e. in Ω1

(5.9)



Optimal control in heterogeneous domain decomposition methods 245

m = 0,1, . . . .

For each α > 0, one can choose the parameters {γm} can be choosen such that
process (5.8) is convergent [11–13].

Theorem 5.1. The following assertions hold true:
(1) For any given ε > 0, there exist a small α > 0 and M = M(α ,ε) such that

‖χ12(uM
1 −uM

2 )‖H12 � ε , for the solutions of (5.8) ((5.9)); thus

‖χ12(uM
1 −uM

2 )‖H12 → 0 as α → +0, M → ∞ (5.10)

and uM
1 ,uM

2 ,λλλ M
1 ,λλλ M

2 ,vM can be considered as an approximate solution of problem
(5.3).

(2) If problem (5.3) has the unique solution u(0)
1 ,u(0)

2 ,λλλ (0)
1 ,λλλ (0)

2 ,v(0),

2

∑
k=1

(
‖u(0)

k −uM
k ‖Xk +‖λλλ (0)

k −λλλ M
k ‖L2(S−k )

)
+‖ω(v(0) −vM)‖H12 → 0 as α → +0

(5.11)
M → ∞

and relation (5.10) is valid too, where um
1 ,um

2 ,λλλ m
1 ,λλλ m

2 ,vm are calculated by the iter-
ative process (5.8).

The proof of this theorem follows from the assertions of Proposition 5.1 and
the convergence of iterative process (5.8). If ν1 ≡ 0 in Ω1 or ν1 = 0 in Ω1\Ω12, the
same results are still valid.

For simplicity we do not write down algorithm (5.9) ((5.8)) in terms of equa-
tions (5.7). This algorithm can be realized numerically in some cases by considering
(5.4)–(5.6) as an extremum problem and in form (5.8). In other cases, this algorithm
can be considered in form (5.9) as an iterative method to solve system (5.7). In both
cases there are specific methods for choosing the parameters {γm} [11–13].

6. CONCLUSION

We have analysed some heterogeneous domain decomposition algorithms based on
the optimal control approaches to ‘overlapping domains Ω1,Ω2’. To prove the con-
vergence of algorithms we need to study the uniqueness and existence questions for
the boundary value problem and the exact controllability problem ‘stated initially’.
We proved that to construct approximate solutions, which coincide in Ω12 = Ω1∩Ω2
with any accuracy, the ‘volume control’ must also be introduced into consideration.
‘Volume controls’ can be introduced into both equations as well.

In [3] we also analyzed the control approach developed in the previous sections
to heterogeneous domain decomposition methods in the case of the ‘standard’ (ho-
mogeneous) domain decomposition method for elliptic equations.
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Some of our conclusions are confirmed by numerical experiments described in
[4].

We hope that the results presented in this paper will be helpful in the construc-
tion of domain decomposition algorithms for other types of equations and boundary
conditions, for systems of equations, and for problems in Ω ⊂ R

n , n > 2.
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R. Acad. Sci., Paris, Sér. I, Math. (1998) 327, 947–952.

7. J.-L. Lions and O. Pironneau, Sur le controle paralléle des systémes distribués. C. R. Acad. Sci.,
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