11 research outputs found
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ
The article exposes description of features of the combined approach application to the evaluation of measurement results uncertainty. The aim of this work is the justification and development of new science-driven approaches to achieve maximum efficacy of measurements on the criteria "accuracy/costs" at the stated level of confidence.It provides theoretical base for correctness of combined approach to assess measurement results uncertainty. There is proposition to conventionally divide measurement process into fragments β combining objects, each from shall be considered as individual element for evaluation. It is well known that combining objects can be formed by grouping individual components (resources) of the measurement process either via separate stages of the measurement process.Correctness of such approach is based on the application of "resource" and "process" approaches as regards identification of the factors that affect the measurement results uncertainty. This article provides recommendations on selection of model or empiric approach for evaluating of particular contributions from combining objects of different types into total uncertainty of the final measurement result. In order to improve the validity of empiric approach of the criteria of sufficiency of measurement method uncertainty examination was formulated. It is recommended to evaluate the total uncertainty of the final measurement result by complexation of evaluations of particular total uncertainty of the results for all fragments according to the uncertainties distribution law.It is determined two typical cases of effective application of the combined approach to evaluation of measurement results uncertainty: method of direct measurements and method of indirect measurements. This article considers features of effective application of the combined approach for both situations providing corresponding examples. Special attention is paid to the application of the combined approach to assessing the test results uncertainty. As distinct from the measurement process realized under normal conditions, testing process includes additional external influence factors that are determined by test conditions.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π½ΠΎΠ²ΡΡ
Π½Π°ΡΠΊΠΎΡΠΌΠΊΠΈΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΏΠΎ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ Β«ΡΠΎΡΠ½ΠΎΡΡΡ/ΡΡΡΠ΄ΠΎΡΠΌΠΊΠΎΡΡΡΒ» ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄ΠΎΠ²Π΅ΡΠΈΡ.Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΡΡΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²Π½ΠΎ Π΄Π΅Π»ΠΈΡΡ Π½Π° ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ β ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Ρ ΠΏΡΡΡΠΌ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π»ΠΈΠ±ΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² (ΡΠ΅ΡΡΡΡΠΎΠ²) ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, Π»ΠΈΠ±ΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΡΠ°ΠΏΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ.ΠΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Β«ΡΠ΅ΡΡΡΡΠ½ΠΎΠ³ΠΎΒ» ΠΈ Β«ΠΏΡΠΎΡΠ΅ΡΡΠ½ΠΎΠ³ΠΎΒ» ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π²Π»ΠΈΡΡΡΠΈΡ
Π½Π° Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ Π²ΡΠ±ΠΎΡΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΠ°ΡΡΠ½ΡΡ
Π²ΠΊΠ»Π°Π΄ΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π² ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΠ»Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΠ΅ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ ΠΏΡΡΡΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ΅Π½ΠΎΠΊ ΡΠ°ΡΡΠ½ΡΡ
ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ
Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π²ΡΠ΅Ρ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠ΅ΠΉ.ΠΡΠ΄Π΅Π»Π΅Π½Ρ Π΄Π²Π° ΡΠΈΠΏΠΈΡΠ½ΡΡ
ΡΠ»ΡΡΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ: ΠΌΠ΅ΡΠΎΠ΄ ΠΏΡΡΠΌΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΡΠ²Π΅Π½Π½ΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ
ΡΠΈΡΡΠ°ΡΠΈΠΉ Π½Π° ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
. ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»Π΅Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, Π² ΠΏΡΠΎΡΠ΅ΡΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ Π²Π½Π΅ΡΠ½ΠΈΡ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ
ΠΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π² ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΌ ΡΠΈΠΊΠ»Π΅ ΠΈΠ·Π΄Π΅Π»ΠΈΡ
On the basis of technical and economic analysis of the properties of relations between design and technological solutions, a method for the integral assessment of production manufacturability by combining individual manufacturability coefficients at different stages of the product life cycle is suggested. Separate coefficients take into account the influence degree of various constituent stages on the labor intensity of production and maintenance, repair and disposal of the product structure. Design and technological solutions in design systems imply the use of properties such as reflexivity, symmetry and transitivity. As a result, it is proposed to understand the properties set of the product design that determine its adaptability to achieve optimal costs in production and disposal for specified quality indicators and work conditions. A list of manufacturability coefficients of manufacturing a product design has been determined, including coefficients of purchase, repeatability of details and connections, material hardness, borrowing, typing, precision, roughness, mass. An examination of the effectiveness assessment the use tools, equipment and other objects of the technological environment at the stages design and technological production preparation is formalized. The examination includes an analysis of the frequency and duration of the meeting of structural parts elements and the tools state at the stages of their manufacture, operation and disposal.ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Ρ
Π½ΠΈΠΊΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΡΠΊΠΎ-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΡΡΠ΅ΠΌ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΡΡΠΈ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ°ΠΏΠ°Ρ
ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΈΠ·Π΄Π΅Π»ΠΈΡ. ΠΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΡΠΈΡΡΠ²Π°ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΡΡΠ°ΠΏΠΎΠ² Π½Π° ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΈ ΠΎΠ±ΡΠ»ΡΠΆΠΈΠ²Π°Π½ΠΈΡ, ΡΠ΅ΠΌΠΎΠ½ΡΠ° ΠΈ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΡ. ΠΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΡΠΊΠΎ-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ², ΠΊΠ°ΠΊ ΡΠ΅ΡΠ»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΡΡΡ ΠΈ ΡΡΠ°Π½Π·ΠΈΡΠΈΠ²Π½ΠΎΡΡΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΏΠΎΠ΄ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΡΡΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΡ
Π΅Π΅ ΠΏΡΠΈΡΠΏΠΎΡΠΎΠ±Π»Π΅Π½Π½ΠΎΡΡΡ ΠΊ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
Π·Π°ΡΡΠ°Ρ ΠΏΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ ΠΈ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Π΄Π»Ρ Π·Π°Π΄Π°Π½Π½ΡΡ
Β ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π±ΠΎΡ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎΡΡΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΡ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΠΊΡΠΏΠ°Π΅ΠΌΠΎΡΡΠΈ, ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΡΠ²Π΅ΡΠ΄ΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°, Π·Π°ΠΈΠΌΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ, ΡΠΈΠΏΠΈΠ·Π°ΡΠΈΠΈ, ΡΠΎΡΠ½ΠΎΡΡΠΈ, ΡΠ΅ΡΠΎΡ
ΠΎΠ²Π°ΡΠΎΡΡΠΈ, ΠΌΠ°ΡΡΡ. Π€ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Π° ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ², ΡΡΠ΅Π΄ΡΡΠ² ΠΎΡΠ½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ Π½Π° ΡΡΠ°Π΄ΠΈΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΡΠΊΠΎΠΉ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΠΊΡΠΏΠ΅ΡΡΠΈΠ·Π° Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π°Π½Π°Π»ΠΈΠ· ΡΠ°ΡΡΠΎΡΡ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π²ΡΡΡΠ΅ΡΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² Π½Π° ΡΡΠ°ΠΏΠ°Ρ
ΠΈΡ
ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ, ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΠΈ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ
Π ΠΠ‘Π-ΠΠ ΠΠΠΠ’ΠΠ ΠΠΠΠΠΠ«Π ΠΠΠΠ₯ΠΠ Π Π ΠΠΠ ΠΠΠΠ’ΠΠ ΠΠΠ’ΠΠΠΠ ΠΠΠΠ’Π ΠΠΠ―
The necessity for scientific and methodical study of methods for monitoring the characteristics of flameresistance of building structures has the highest priority in the field of fire safety. The aim of this work was to provide the required degree of reliability of the results of quality control of flame-resistant coatings of building structures and high efficiency of decisions due to the risk-based approach to the development of control methods.Substantiated risk-based approach to the development of methods of control, involving the consideration on the basis of process model, control flame-resistance of building object in all possible potential problems that can cause the risk of incorrect decision-making. A model of the risks arising from the control of the flameretardant coating thickness has been developed. Two major risk groups have been identified. The first group is related to the uncertainty of coating thickness measurement at a single control point. The second group of risks is related to the unrepresentativeness of selective control over the entire surface of the construction object as a whole Potential risk sources have been identified for each group. For the entire range of sources of particular risks the results of studies of the mechanisms of their manifestation, the estimated degree of influence on the accuracy of the control of compliance of flame-retardant coating thickness requirements. The analysis is carried out on the basis of both theoretical and experimental statistical studies on a number of construction projects.According to the results of the analysis of all particular risks of control unreliability, rational ways of their minimization in the form of technical or organizational and technical measures, which are refl in the developed project of the control method, are proposed. Project control method was built on the basis of a agreed scheme of control of the thickness of the fl coating of building structures sequentially the three parties.Β Formulated and solved the task of the metrological control of the thickness of the flame-retardant coating as indirect measurement methods non-destructive thickness measurements. Theoretical and applied aspects of the process of flame-retardant coating thickness control of building structures under conditions of high risk of making incorrect decisions on the results of control are considered.ΠΠ΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π½Π°ΡΡΠ½ΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΠ³Π½Π΅ΡΡΠΎΠΉΠΊΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ (Π‘Π) ΠΈΠΌΠ΅Π΅Ρ Π½Π°ΠΈΠ²ΡΡΡΠΈΠΉ ΠΏΡΠΈΠΎΡΠΈΡΠ΅Ρ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠ°ΡΠ½ΠΎΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΎΠ³Π½Π΅ΡΡΠΎΠΉΠΊΠΈΡ
ΠΏΠΎΠΊΡΡΡΠΈΠΉ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΠΈ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π° ΡΡΠ΅Ρ ΡΠΈΡΠΊ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ ΡΠΈΡΠΊ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡΠΈΠΉ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ Π½Π° Π±Π°Π·Π΅ ΠΏΡΠΎΡΠ΅ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΎΠ³Π½Π΅ΡΡΠΎΠΉΠΊΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π²ΡΠ΅Ρ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π²ΡΠ·Π²Π°ΡΡ ΡΠΈΡΠΊ Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠΈΡΠΊΠΎΠ², Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ
ΠΏΡΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΠ³Π½Π΅Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π΄Π²Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π³ΡΡΠΏΠΏΡ ΡΠΈΡΠΊΠΎΠ². ΠΠ΅ΡΠ²Π°Ρ Π³ΡΡΠΏΠΏΠ° ΡΠ²ΡΠ·Π°Π½Π° Ρ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΏΠΎΠΊΡΡΡΠΈΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ. ΠΡΠΎΡΠ°Ρ Π³ΡΡΠΏΠΏΠ° ΡΠΈΡΠΊΠΎΠ² ΡΠ²ΡΠ·Π°Π½Π° Ρ Π½Π΅ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡΡ Π²ΡΠ±ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π²ΡΠ΅ΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π² ΡΠ΅Π»ΠΎΠΌ. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΈ ΡΠΈΡΠΊΠΎΠ². ΠΠ»Ρ Π²ΡΠ΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² ΡΠ°ΡΡΠ½ΡΡ
ΡΠΈΡΠΊΠΎΠ² ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ, ΠΎΡΠ΅Π½Π΅Π½Π° ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΠ³Π½Π΅Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ. ΠΠ½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠ°ΠΊ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
, ΡΠ°ΠΊ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΡΡΠ΄Π΅ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ².ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΡΠ΅Ρ
ΡΠ°ΡΡΠ½ΡΡ
ΡΠΈΡΠΊΠΎΠ² Π½Π΅Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΈ ΠΈΡ
ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ Π² Π²ΠΈΠ΄Π΅ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ»ΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅Ρ, Π½Π°ΡΠ΅Π΄ΡΠΈΡ
ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ. ΠΡΠΎΠ΅ΠΊΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΠ³Π½Π΅Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΡΠ΅ΠΌΡ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ.Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π° ΠΈ ΡΠ΅ΡΠ΅Π½Π° ΠΌΠ΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΠ³Π½Π΅Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡ ΠΊΠ°ΠΊ ΠΊΠΎΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π·ΡΡΡΠ°ΡΡΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΎΠ»ΡΠΈΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΎΠ³Π½Π΅Π·Π°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΡΡΠΈΡΒ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° ΠΏΡΠΈΠ½ΡΡΠΈΡ Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ
Method of singular wavelet: data approximation and smoothing according to process effectiveness
This work examines the universal algorithm of function approximation by method of singular wavelets, which allows to solve a problem of function smoothing and interpolation (quasi-interpolation) given on non-uniform mesh at Rn
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ
The article exposes description of features of the combined approach application to the evaluation of measurement results uncertainty. The aim of this work is the justification and development of new science-driven approaches to achieve maximum efficacy of measurements on the criteria "accuracy/costs" at the stated level of confidence. It provides theoretical base for correctness of combined approach to assess measurement results uncertainty. There is proposition to conventionally divide measurement process into fragments β combining objects, each from shall be considered as individual element for evaluation. It is well known that combining objects can be formed by grouping individual components (resources) of the measurement process either via separate stages of the measurement process. Correctness of such approach is based on the application of "resource" and "process" approaches as regards identification of the factors that affect the measurement results uncertainty. This article provides recommendations on selection of model or empiric approach for evaluating of particular contributions from combining objects of different types into total uncertainty of the final measurement result. In order to improve the validity of empiric approach of the criteria of sufficiency of measurement method uncertainty examination was formulated. It is recommended to evaluate the total uncertainty of the final measurement result by complexation of evaluations of particular total uncertainty of the results for all fragments according to the uncertainties distribution law. It is determined two typical cases of effective application of the combined approach to evaluation of measurement results uncertainty: method of direct measurements and method of indirect measurements. This article considers features of effective application of the combined approach for both situations providing corresponding examples. Special attention is paid to the application of the combined approach to assessing the test results uncertainty. As distinct from the measurement process realized under normal conditions, testing process includes additional external influence factors that are determined by test conditions
Features of Πpplication of a Π‘ombined Πpproach to the Πvaluation of the Πeasurement Results Uncertainty
The article exposes description of features of the combined approach application to the evaluation of measurement results uncertainty. The aim of this work is the justification and development of new science-driven approaches to achieve maximum efficacy of measurements on the criteria "accuracy/costs" at the stated level of confidence.It provides theoretical base for correctness of combined approach to assess measurement results uncertainty. There is proposition to conventionally divide measurement process into fragments β combining objects, each from shall be considered as individual element for evaluation. It is well known that combining objects can be formed by grouping individual components (resources) of the measurement process either via separate stages of the measurement process.Correctness of such approach is based on the application of "resource" and "process" approaches as regards identification of the factors that affect the measurement results uncertainty. This article provides recommendations on selection of model or empiric approach for evaluating of particular contributions from combining objects of different types into total uncertainty of the final measurement result. In order to improve the validity of empiric approach of the criteria of sufficiency of measurement method uncertainty examination was formulated. It is recommended to evaluate the total uncertainty of the final measurement result by complexation of evaluations of particular total uncertainty of the results for all fragments according to the uncertainties distribution law.It is determined two typical cases of effective application of the combined approach to evaluation of measurement results uncertainty: method of direct measurements and method of indirect measurements. This article considers features of effective application of the combined approach for both situations providing corresponding examples. Special attention is paid to the application of the combined approach to assessing the test results uncertainty. As distinct from the measurement process realized under normal conditions, testing process includes additional external influence factors that are determined by test conditions
Method of singular wavelet: data approximation and smoothing according to process effectiveness
This work examines the universal algorithm of function approximation by method of singular wavelets, which allows to solve a problem of function smoothing and interpolation (quasi-interpolation) given on non-uniform mesh at Rn
THE RISK-ORIENTED APPROACH TO THE DEVELOPMENT OF CONTROL METHOD
The necessity for scientific and methodical study of methods for monitoring the characteristics of flameresistance of building structures has the highest priority in the field of fire safety. The aim of this work was to provide the required degree of reliability of the results of quality control of flame-resistant coatings of building structures and high efficiency of decisions due to the risk-based approach to the development of control methods.Substantiated risk-based approach to the development of methods of control, involving the consideration on the basis of process model, control flame-resistance of building object in all possible potential problems that can cause the risk of incorrect decision-making. A model of the risks arising from the control of the flameretardant coating thickness has been developed. Two major risk groups have been identified. The first group is related to the uncertainty of coating thickness measurement at a single control point. The second group of risks is related to the unrepresentativeness of selective control over the entire surface of the construction object as a whole Potential risk sources have been identified for each group. For the entire range of sources of particular risks the results of studies of the mechanisms of their manifestation, the estimated degree of influence on the accuracy of the control of compliance of flame-retardant coating thickness requirements. The analysis is carried out on the basis of both theoretical and experimental statistical studies on a number of construction projects.According to the results of the analysis of all particular risks of control unreliability, rational ways of their minimization in the form of technical or organizational and technical measures, which are refl in the developed project of the control method, are proposed. Project control method was built on the basis of a agreed scheme of control of the thickness of the fl coating of building structures sequentially the three parties.Β Formulated and solved the task of the metrological control of the thickness of the flame-retardant coating as indirect measurement methods non-destructive thickness measurements. Theoretical and applied aspects of the process of flame-retardant coating thickness control of building structures under conditions of high risk of making incorrect decisions on the results of control are considered
Atmospheric Plasma Spraying Evolution Since the Sixties Through Modeling, Measurements and Sensors
International audienceThis paper presents, through examples, the evolutions of atmospheric plasma spraying since the sixties. The drastic improvement of the spray conditions and coatings reproducibility during more than 50 years was linked both to researches in laboratories and developments of spray equipmentβs (plasma torches, computerized control panels, robots to spray coatings on complex parts, sensors working in the harsh environment of spray boothsβ¦). This evolution is illustrated through the following topics: (1) plasma forming gas thermodynamic and transport properties either at local thermodynamic equilibrium or more recently at two temperatures; (2) evolution of plasma spray torches since the nineties; (3) plasma jet and in-flight particle measurements with laboratory equipmentβs and then sensors in spray booths; (4) plasma jets and torches modeling as well as heat and momentum transfer to particles; (5) splats formation and layering
Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol
Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs