2,036 research outputs found

    A Review on Optimizing Radial Basis Function Neural Network using Nature Inspired Algorithm

    Get PDF
    Radial Basis Function (RBF) is a type of feed forward neural network .This function can be applied to interpolation, chaotic time-series modeling, control engineering, image restoration, data fusion etc. In RBF network, parameters of basis functions (such as width, the position and number of centers) in the nonlinear hidden layer have great influence on the performance of the network. Common RBF training algorithms cannot possibly find the global optima of nonlinear parameters in the hidden layer, and often have too many hidden units to reach certain approximation abilities, which will lead to too large a scale for the network and decline of generalization ability. Also, RBF neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Secondly, the Swarm Intelligence Algorithms are (Meta-Heuristic) development Algorithms, which attracted much attention and appeared its ability in the last ten years within many applications such as data mining, scheduling, improve the performance of artificial neural networks (ANN) and classification. So, in this paper the work of Artificial Bee Colony (ABC), Genetic algorithm(GA), Particle swarm optimization(PSO) and Bat algorithm(BA) have been reviewed, which optimized the RBF neural network in their own terms

    Understanding Real World Indoor Scenes With Synthetic Data

    Get PDF
    Scene understanding is a prerequisite to many high level tasks for any automated intelligent machine operating in real world environments. Recent attempts with supervised learning have shown promise in this direction but also highlighted the need for enormous quantity of supervised data- performance increases in proportion to the amount of data used. However, this quickly becomes prohibitive when considering the manual labour needed to collect such data. In this work, we focus our attention on depth based semantic per-pixel labelling as a scene understanding problem and show the potential of computer graphics to generate virtually unlimited labelled data from synthetic 3D scenes. By carefully synthesizing training data with appropriate noise models we show comparable performance to state-of-the-art RGBD systems on NYUv2 dataset despite using only depth data as input and set a benchmark on depth-based segmentation on SUN RGB-D dataset

    Bioinspired cyclic dipeptide functionalized nanofibers for thermal sensing and energy harvesting

    Get PDF
    The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ma16062477/s1, Figure S1: Optical microscopy; Figure S2: Output voltage as a function of time from Cyclo (L-Trp-L-Trp)@PLLA electrospun nanofibers; Figure S3: Piezoelectric current versus applied force for Cyclo (L-Trp-L-Trp)@PLLA and PLLA neat fibers, with the respective linear fits; Figure S4: Output voltage for low frequencies up to 10 Hz and output voltage as a function of time, from Cyclo (L-Trp-L-Trp)@PCL electrospun nanofibers.Nanostructured dipeptide self-assemblies exhibiting quantum confinement are of great interest due to their potential applications in the field of materials science as optoelectronic materials for energy harvesting devices. Cyclic dipeptides are an emerging outstanding group of ring-shaped dipeptides, which, because of multiple interactions, self-assemble in supramolecular structures with different morphologies showing quantum confinement and photoluminescence. Chiral cyclic dipeptides may also display piezoelectricity and pyroelectricity properties with potential applications in new sources of nano energy. Among those, aromatic cyclo-dipeptides containing the amino acid tryptophan are wide-band gap semiconductors displaying the high mechanical rigidity, photoluminescence and piezoelectric properties to be used in power generation. In this work, we report the fabrication of hybrid systems based on chiral cyclo-dipeptide L-Tryptophan-L-Tryptophan incorporated into biopolymer electrospun fibers. The micro/nanofibers contain self-assembled nano-spheres embedded into the polymer matrix, are wide-band gap semiconductors with 4.0 eV band gap energy, and display blue photoluminescence as well as relevant piezoelectric and pyroelectric properties with coefficients as high as 57 CN−1 and  35×10−6 Cm−2K−1, respectively. Therefore, the fabricated hybrid mats are promising systems for future thermal sensing and energy harvesting applications.This research was funded by Fundação para a Ciência e Tecnologia through FEDER (European Fund for Regional Development)-COMPETE-QREN-EU (ref. UID/FIS/04650/2013 and UID/FIS/04650/2019) and E-Field“Electric-Field Engineered Lattice Distortions (E-FiELD) for optoelectronic devices, ref. PTDC/NAN-MAT/0098/2020

    Genetic Evaluation of Leucaena Genotypes in Bundelkhand Region of Central India

    Get PDF
    During the 1970s and 1980s, Leucaena was known as the “miracle tree” native to Central America and Mexico, because of its worldwide success as a long-lived and highly nutritious forage tree. It is estimated to cover 2-5 million ha area worldwide. The genus Leucaena is one of the most widely grown tropical fodder trees and is the subject of extensive research. This is mainly due to its long life span; high productivity even under regular defoliation; its adaptation to wide climatic and edaphic tolerances; excellent palatability and digestibility and many uses including wood for timber and fuel wood. The species possesses enormous wealth of variability and great potential for economic yield which attract the breeders in utilizing the species in hybridization. A logical way to start any breeding programme is to survey the variations present in the germplasm. Precise information on the nature and degree of genetic divergence in respect of important traits is a prerequisite for undertaking meaningful breeding programme towards the improvement and conservation of a species. Further an investigation into the nature and degree of divergence among populations will be useful in understanding the course of evolution and for classifying the tree population into groups based on the diversity, particularly when they are overlapping in one more characters. Therefore, the present study was conducted to estimate genetic divergence among different germplasm of genus Leucaena

    Nanostructured electrospun fibers with self-assembled cyclo-L-Tryptophan-L-Tyrosine dipeptide as piezoelectric materials and optical sd harmonic generators

    Get PDF
    The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ma16144993/s1, Figure S1: Experimental setup for piezoelectric measurements; Figure S2: FTIR spectra; Figure S3: TGA spectra; Figure S4: DSC spectra. References [43,44] are cited in the supplementary materials.The potential use of nanostructured dipeptide self-assemblies in materials science for energy harvesting devices is a highly sought-after area of research. Specifically, aromatic cyclo-dipeptides containing tryptophan have garnered attention due to their wide-bandgap semiconductor properties, high mechanical rigidity, photoluminescence, and nonlinear optical behavior. In this study, we present the development of a hybrid system comprising biopolymer electrospun fibers incorporated with the chiral cyclo-dipeptide L-Tryptophan-L-Tyrosine. The resulting nanofibers are wide-bandgap semiconductors (bandgap energy 4.0 eV) consisting of self-assembled nanotubes embedded within a polymer matrix, exhibiting intense blue photoluminescence. Moreover, the cyclo-dipeptide L-Tryptophan-L-Tyrosine incorporated into polycaprolactone nanofibers displays a strong effective second harmonic generation signal of 0.36 pm/V and shows notable piezoelectric properties with a high effective coefficient of 22 pCN−1, a piezoelectric voltage coefficient of ge f f = 1.2 VmN−1 and a peak power density delivered by the nanofiber mat of 0.16 µWcm−2. These hybrid systems hold great promise for applications in the field of nanoenergy harvesting and nanophotonics.This research was funded by Fundação para a Ciência e Tecnologia through FEDER (European Fund for Regional Development)-COMPETE-QREN-EU (ref. UID/FIS/04650/2013 and UID/FIS/04650/2019) and E-Field “Electric-Field Engineered Lattice Distortions (E-FiELD)” for optoelectronic devices, ref. PTDC/NAN-MAT/0098/2020, POCI-01-0247-FEDER-045939

    Role of P-selectin in platelet sequestration in pulmonary capillaries during endotoxemia

    Get PDF
    Background: There is growing evidence that platelets accumulate in the lung and contribute to the pathogenesis of acute lung injury during endotoxemia. The aims of the present study were to localize platelet sequestration in the pulmonary microcirculation and to investigate the role of P-selectin as a molecular mechanism of platelet endothelial cell interaction. Methods: We used in vivo fluorescence microscopy to quantify the kinetics of fluorescently labeled erythrocytes and platelets in alveolar capillary networks in rabbit lungs. Results: Six hours after onset of endotoxin infusion we observed a massive rolling along and firm adherence of platelets to lung capillary endothelial cells whereas under control conditions no platelet sequestration was detected. P-selectin was expressed on the surface of separated platelets which were incubated with endotoxin and in lung tissue. Pretreatment of platelets with fucoidin, a P-selectin antagonist, significantly attenuated the endotoxin-induced platelet rolling and adherence. In contrast, intravenous infusion of fucoidin in endotoxin-treated rabbits did not inhibit platelet sequestration in pulmonary capillaries. Conclusion: We conclude that platelets accumulate in alveolar capillaries following endotoxemia. P-selectin expressed on the surface of platelets seems to play an important role in mediating this platelet-endothelial cell interaction. Copyright (c) 2006 S. Karger AG, Basel

    An Extragalactic 12CO J=3-2 survey with the Heinrich-Hertz-Telescope

    Full text link
    We present results of a ^{12}CO J = 3-2 survey of 125 nearby galaxies obtained with the 10-m Heinrich-Hertz-Telescope, with the aim to characterize the properties of warm and dense molecular gas in a large variety of environments. With an angular resolution of 22'', ^{12}CO 3-2 emission was detected in 114 targets. Based on 61 galaxies observed with equal beam sizes the ^{12}CO 3-2/1-0 integrated line intensity ratio R_{31} is found to vary from 0.2 to 1.9, with an average value of 0.81. No correlations are found for R_{31} to Hubble type and far infrared luminosity. Possible indications for a correlation with inclination angle and the 60mum/100mum color temperature of the dust are not significant. Higher R_{31} ratios than in ``normal'' galaxies, hinting at enhanced molecular excitation, may be found in galaxies hosting active galactic nuclei. Even higher average values are determined for galaxies with bars or starbursts, the latter being identified by the ratio of infrared luminosity versus isophotal area, log[(L_{FIR}/L_{SUN})/(D_{25}/kpc)^2)] > 7.25. (U)LIRGs are found to have the highest averaged R_{31} value. This may be a consequence of particularly vigorous star formation activity, triggered by galaxy interaction and merger events. The nuclear CO luminosities are slightly sublinearly correlated with the global FIR luminosity in both the ^{12}CO J = 3-2 and the 1-0 lines. The slope of the log-log plots rises with compactness of the respective galaxy subsample, indicating a higher average density and a larger fraction of thermalized gas in distant luminous galaxies. While linear or sublinear correlations for the ^{12}CO J = 3-2 line can be explained, if the bulk of the observed J = 3-2 emission originates from molecular gas with densities below the critical one, the case of the ^{12}CO J = 1-0 line with its small critical density remains a puzzle.Comment: 26 pages, 9 figures, 4 tables, Accepted for publication in The Astrophysical Journal (Part 1

    Observation of Very High Energy Gamma Rays from HESS J1804-216 with CANGAROO-III Telescopes

    Full text link
    We observed the unidentified TeV gamma-ray source HESS J1804-216 with the CANGAROO-III atmospheric Cerenkov telescopes from May to July in 2006. We detected very high energy gamma rays above 600 GeV at the 10 sigma level in an effective exposure of 76 hr. We obtained a differential flux of (5.0+/-1.5_{stat}+/-1.6_{sys})\times 10^{-12}(E/1 TeV)^{-\alpha} cm^{-2}s^{-1}TeV^{-1} with a photon index \alpha of 2.69 +/- 0.30_{stat} +/- 0.34_{sys}, which is consistent with that of the H.E.S.S. observation in 2004. We also confirm the extended morphology of the source. By combining our result with multi-wavelength observations, we discuss the possible counterparts of HESS J1804-216 and the radiation mechanism based on leptonic and hadronic processes for a supernova remnant and a pulsar wind nebula.Comment: 11 pages, 12 figures, Accepted in Ap
    corecore