197 research outputs found

    Conserved ZZ/ZW Sex Chromosomes in Caribbean Croaking Geckos (\u3cem\u3eAristelliger\u3c/em\u3e: Sphaerodactylidae)

    Get PDF
    Current understanding of sex chromosome evolution is largely dependent on species with highly degenerated, heteromorphic sex chromosomes, but by studying species with recently evolved or morphologically indistinct sex chromosomes we can greatly increase our understanding of sex chromosome origins, degeneration and turnover. Here, we examine sex chromosome evolution and stability in the gecko genus Aristelliger. We used RADseq to identify sex‐specific markers and show that four Aristelliger species, spanning the phylogenetic breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2. These conserved sex chromosomes contrast with many other gecko sex chromosome systems by showing a degree of stability among a group known for its dynamic sex‐determining mechanisms. Cytogenetic data from A. expectatus revealed homomorphic sex chromosomes with an accumulation of repetitive elements on the W chromosome. Taken together, the large number of female‐specific A. praesignis RAD markers and the accumulation of repetitive DNA on the A. expectatus W karyotype suggest that the Z and W chromosomes are highly differentiated despite their overall morphological similarity. We discuss this paradoxical situation and suggest that it may, in fact, be common in many animal species

    Embryonic Development of A Parthenogenetic Vertebrate, The Mourning Gecko (\u3cem\u3eLepidodactylus lugubris\u3c/em\u3e)

    Get PDF
    Background One goal of evolutionary developmental biology is to understand the role of development in the origin of phenotypic novelty and convergent evolution. Geckos are an ideal system to study this topic, as they are species‐rich and exhibit a suite of diverse morphologies—many of which have independently evolved multiple times within geckos. Results We characterized and discretized the embryonic development of Lepidodactylus lugubris—an all‐female, parthenogenetic gecko species. We also used soft‐tissue ÎŒCT to characterize the development of the brain and central nervous system, which is difficult to visualize using traditional microscopy techniques. Additionally, we sequenced and assembled a de novo transcriptome for a late‐stage embryo as a resource for generating future developmental tools. Herein, we describe the derived and conserved patterns of L. lugubris development in the context of squamate evolution and development. Conclusions This embryonic staging series, ÎŒCT data, and transcriptome together serve as critical enabling resources to study morphological evolution and development, the evolution and development of parthenogenesis, and other questions concerning vertebrate evolution and development in an emerging gecko model

    Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival data, survival analysis can be used. However, it is not possible to include associative effects in the current software for survival analysis. A solution could be to combine survival analysis and a linear animal model including associative effects. This paper presents a two-step approach (2STEP), combining survival analysis and a linear animal model including associative effects (LAM).</p> <p>Methods</p> <p>Data of three purebred White Leghorn layer lines from Institut de SĂ©lection Animale B.V., a Hendrix Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to estimate genetic parameters for social effects on observed survival days.</p> <p>Results</p> <p>Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.</p> <p>Conclusion</p> <p>It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross validation showed that social genetic effects contribute to a large difference in survival days between two extreme groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to cannibalism in laying hens.</p

    From polygons and symbols to polylogarithmic functions

    Full text link
    We present a review of the symbol map, a mathematical tool that can be useful in simplifying expressions among multiple polylogarithms, and recall its main properties. A recipe is given for how to obtain the symbol of a multiple polylogarithm in terms of the combinatorial properties of an associated rooted decorated polygon. We also outline a systematic approach to constructing a function corresponding to a given symbol, and illustrate it in the particular case of harmonic polylogarithms up to weight four. Furthermore, part of the ambiguity of this process is highlighted by exhibiting a family of non-trivial elements in the kernel of the symbol map for arbitrary weight.Comment: 75 pages. Mathematica files with the expression of all HPLs up to weight 4 in terms of the spanning set are include

    South American Plasmodium falciparum after the Malaria Eradication Era: Clonal Population Expansion and Survival of the Fittest Hybrids

    Get PDF
    Malaria has reemerged in many regions where once it was nearly eliminated. Yet the source of these parasites, the process of repopulation, their population structure, and dynamics are ill defined. Peru was one of malaria eradication's successes, where Plasmodium falciparum was nearly eliminated for two decades. It reemerged in the 1990s. In the new era of malaria elimination, Peruvian P. falciparum is a model of malaria reinvasion. We investigated its population structure and drug resistance profiles. We hypothesized that only populations adapted to local ecological niches could expand and repopulate and originated as vestigial populations or recent introductions. We investigated the genetic structure (using microsatellites) and drug resistant genotypes of 220 parasites collected from patients immediately after peak epidemic expansion (1999–2000) from seven sites across the country. The majority of parasites could be grouped into five clonal lineages by networks and AMOVA. The distribution of clonal lineages and their drug sensitivity profiles suggested geographic structure. In 2001, artesunate combination therapy was introduced in Peru. We tested 62 parasites collected in 2006–2007 for changes in genetic structure. Clonal lineages had recombined under selection for the fittest parasites. Our findings illustrate that local adaptations in the post-eradication era have contributed to clonal lineage expansion. Within the shifting confluence of drug policy and malaria incidence, populations continue to evolve through genetic outcrossing influenced by antimalarial selection pressure. Understanding the population substructure of P. falciparum has implications for vaccine, drug, and epidemiologic studies, including monitoring malaria during and after the elimination phase

    Quantitative and Molecular Genetic Analyses of Mutations Increasing Drosophila Life Span

    Get PDF
    Understanding the genetic and environmental factors that affect variation in life span and senescence is of major interest for human health and evolutionary biology. Multiple mechanisms affect longevity, many of which are conserved across species, but the genetic networks underlying each mechanism and cross-talk between networks are unknown. We report the results of a screen for mutations affecting Drosophila life span. One third of the 1,332 homozygous P–element insertion lines assessed had quantitative effects on life span; mutations reducing life span were twice as common as mutations increasing life span. We confirmed 58 mutations with increased longevity, only one of which is in a gene previously associated with life span. The effects of the mutations increasing life span were highly sex-specific, with a trend towards opposite effects in males and females. Mutations in the same gene were associated with both increased and decreased life span, depending on the location and orientation of the P–element insertion, and genetic background. We observed substantial—and sex-specific—epistasis among a sample of ten mutations with increased life span. All mutations increasing life span had at least one deleterious pleiotropic effect on stress resistance or general health, with different patterns of pleiotropy for males and females. Whole-genome transcript profiles of seven of the mutant lines and the wild type revealed 4,488 differentially expressed transcripts, 553 of which were common to four or more of the mutant lines, which include genes previously associated with life span and novel genes implicated by this study. Therefore longevity has a large mutational target size; genes affecting life span have variable allelic effects; alleles affecting life span exhibit antagonistic pleiotropy and form epistatic networks; and sex-specific mutational effects are ubiquitous. Comparison of transcript profiles of long-lived mutations and the control line reveals a transcriptional signature of increased life span
    • 

    corecore