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Abstract 
Current understanding of sex chromosome evolution is largely dependent on species with highly degenerated, 
heteromorphic sex chromosomes, but by studying species with recently evolved or morphologically indistinct 
sex chromosomes we can greatly increase our understanding of sex chromosome origins, degeneration and 
turnover. Here, we examine sex chromosome evolution and stability in the gecko genus Aristelliger. We used 
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RADseq to identify sex‐specific markers and show that four Aristelliger species, spanning the phylogenetic 
breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2. These conserved sex 
chromosomes contrast with many other gecko sex chromosome systems by showing a degree of stability among 
a group known for its dynamic sex‐determining mechanisms. Cytogenetic data from A. expectatus revealed 
homomorphic sex chromosomes with an accumulation of repetitive elements on the W chromosome. Taken 
together, the large number of female‐specific A. praesignis RAD markers and the accumulation of repetitive DNA 
on the A. expectatus W karyotype suggest that the Z and W chromosomes are highly differentiated despite their 
overall morphological similarity. We discuss this paradoxical situation and suggest that it may, in fact, be 
common in many animal species. 

1 INTRODUCTION 
Sex chromosomes evolve from an autosomal chromosome pair that acquires a sex-determining locus. The 
canonical model of sex chromosome evolution suggests linkage between the sex-determining locus and some 
neighbouring sexually antagonistic allele occurs via recombination suppression between the X and Y (or Z and 
W) chromosomes (Charlesworth, 1991; Muller, 1914; Ohno, 1967). However, recombination suppression 
between the proto-sex chromosomes (the X/Y and Z/W) prevents DNA repair and can lead to an accumulation of 
deleterious mutations and repetitive DNAs on the sex-specific chromosome (the Y or W; Charlesworth, 1991; 
Charlesworth & Charlesworth, 2000). Given sufficient time, this degeneration can result in a pair of 
morphologically distinct, or heteromorphic, sex chromosomes. Historically, cytogenetic methods were used to 
identify a species’ sex chromosome system based on the presence of these heteromorphic sex chromosomes in 
one sex and not the other. However, when taxa exhibit morphologically similar (homomorphic) sex 
chromosomes, classic cytogenetic methods fall short. This has led to large knowledge gaps concerning the 
taxonomic distribution of sex chromosomes (Bachtrog et al., 2014; Devlin & Nagahama, 2002; Ezaz, Sarre, 
O’Meally, Graves, & Georges, 2009; Gamble & Zarkower, 2014; Matsubara et al., 2006; Schmid & 
Steinlein, 2001; Stöck et al., 2011). 

The advent of high-throughput DNA sequencing has led to new methods for identifying homomorphic sex 
chromosomes, resulting in a rapid expansion of our knowledge of sex chromosome systems across the tree of 
life (Gamble, 2016). One such method uses genetic markers generated via restriction site-associated DNA 
sequencing (RADseq; Baird et al., 2008), which utilizes the naturally occurring restriction enzyme cut sites 
distributed throughout the genome to generate tens of thousands of markers (RADtags). Comparing RADtags 
from multiple males and females of a species can identify a small fraction of markers that corresponds to the 
sex-specific sex chromosomes (i.e. the Y or the W). Species with an abundance of male-specific RAD markers 
have an XX/XY sex chromosome system, and species with an abundance of female-specific RAD markers have a 
ZZ/ZW system (Gamble et al., 2015; Gamble & Zarkower, 2014; Pan et al., 2016). This method has been used to 
identify homomorphic sex chromosomes across a wide range of taxa (Fowler & Buonaccorsi, 2016; Gamble 
et al., 2015; Jeffries et al., 2018; Nielsen, Daza, Pinto, & Gamble, 2019; Pan et al., 2016) and detect important 
and unexpected transitions among sex chromosomes (Gamble et al., 2017; Nielsen, Banks, Diaz, Trainor, & 
Gamble, 2018). Such methods, particularly when combined with modern cytogenetics (Deakin et al., 2019), are 
building a greater foundation on which to study the evolutionary processes governing sex chromosome origins, 
degeneration and stability. 

Gecko lizards exhibit both male and female heterogamety as well as temperature-dependent sex determination 
(TSD), wherein egg incubation temperature determines sex. Notably, geckos exhibit the highest number of 
identified sex-determining system transitions of any amniote group with between 17 and 25 transitions 
identified thus far (Gamble, 2010; Gamble et al., 2015). The gecko family Sphaerodactylidae consists of over 200 
species in 12 genera broadly distributed in South America, the Caribbean, North Africa, the Middle East and 



Central Asia (Gamble, Bauer, et al., 2011; Gamble, Bauer, Greenbaum, & Jackman, 2008; Gamble, Daza, Colli, 
Vitt, & Bauer, 2011). Despite this rich species diversity, sex-determining systems are known in only a handful of 
species. Of the 12 sphaerodactylid species that have been karyotyped (Table S1), only one, the XX/XY 
species Eupletes europaea, can confidently be said to possess heteromorphic sex chromosomes (Gamble, 2010; 
Gornung, Mosconi, Annesi, & Castiglia, 2013). Gonatodes ceciliae has heteromorphic chromosomes, which have 
been interpreted as XX/XY sex chromosomes (McBee, Bickham, & Dixon., 1987). However, the diverse 
karyotypes among sampled individuals, lack of published female karyotypes and failure of the heteromorphic 
chromosomes to form sex bivalents raise doubts that these are sex chromosomes (Schmid et al., 2014). The 
remaining karyotyped species have homomorphic sex chromosomes (Schmid et al., 2014). More recently, 
RADseq methods have been used to successfully identify additional XX/XY species (Sphaerodactylus nicholsi, S. 
inigoi and Gonatodes ferrugineus) as well as the first (and currently only) sphaerodactylid species with a ZZ/ZW 
sex chromosome system, Aristelliger expectatus (Gamble et al., 2015, 2018). This suggests a minimum of one sex 
chromosome transition in the Sphaerodactylidae. Based on the high level of sex chromosome turnover observed 
in other gecko clades, additional transitions are likely to be uncovered as more data are generated. 

The sphaerodactylid genus Aristelliger, commonly known as croaking geckos, is comprised of nine species 
distributed in the Caribbean and Central America (Bauer & Russell, 1993; Diaz & Hedges, 2009; Schwartz & 
Henderson, 1991). This charismatic group diverged from its sister genus Quedenfeldtia approximately 70 million 
years ago (Gamble, Bauer, et al., 2011) and differs from other New World sphaerodactylids in being nocturnal, 
arboreal, possessing large basal adhesive toepads, and exhibiting the largest range of body sizes of all 
sphaerodactylids (Griffing, Daza, DeBoer, & Bauer, 2018; Henderson & Powell, 2009; Schwartz & 
Henderson, 1991). As previously mentioned, Aristelliger expectatus represents the only sphaerodactylid species 
with a confirmed ZZ/ZW sex chromosome system (Gamble et al., 2015). Here, we combine newly generated 
RADseq data with traditional cytogenetics to identify and characterize sex chromosomes in three 
additional Aristelliger species, A. praesignis, A. lar and A. barbouri. We focus on two main questions: (1) Do 
other species of Aristelliger possess a ZZ/ZW sex chromosome system? And, if so, (2) are the sex chromosomes 
homologous across the genus? In contrast with what has been observed in other geckos, a group noted for 
dynamic sex chromosome turnover, we here recover a conserved sex chromosome system among all 
sampled Aristelliger species. 

2 MATERIALS AND METHODS 
2.1 RADseq 
We extracted DNA from eleven males and ten females of A. praesignis using the QIAGEN DNeasy Blood and 
Tissue Kit (Table S2). We generated single-digest RADseq libraries using a modified protocol from Etter, 
Bassham, Hohenlohe, Johnson, and Cresko (2012) as described in Gamble et al. (2015). Briefly, we digested 
genomic DNA using a high-fidelity Sbf1 restriction enzyme (New England Biolabs) and ligated individually 
barcoded P1 adapters to each sample. We pooled samples into multiple libraries, sonicated and size-selected for 
200- to 500-bp fragments using magnetic beads in a PEG/NaCl buffer (Rohland & Reich, 2012). We then blunt-
end-repaired, dA-tailed and ligated pooled libraries with a P2 adapter containing unique Illumina barcodes. 
Pooled libraries were amplified using NEBNext Ultra II Q5 polymerase (New England Biolabs) for 16 cycles and 
size-selected a second time for 250- to 650-bp fragments that now contained Illumina adapters and unique 
barcodes. Libraries were sequenced using paired-end 125 bp reads on an Illumina HiSeq 2500 at the Medical 
College of Wisconsin. 

2.2 Bioinformatic analysis 
We analysed the RADseq data using a previously described bioinformatics pipeline (Gamble et al., 2015). Raw 
Illumina reads were demultiplexed, trimmed and filtered using the process_radtags function in STACKS (1.41, 



Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 2011). We used RADtools (1.2.4, Baxter et al., 2011) to 
generate RADtags for each individual and identified candidate loci and alleles from the forward reads. We then 
used a custom Python script (Gamble et al., 2015) to identify putative sex-specific markers from the RADtools 
output, that is markers found in one sex but not the other. The script also generated a list of ‘confirmed’ sex-
specific RAD markers that excluded any sex-specific markers found in the original read files of the opposite sex. 
Finally, we used Geneious (R11, Kearse et al., 2012) to assemble the forward and reverse reads of ‘confirmed’ 
sex-specific RAD markers. These loci should correspond to genomic regions unique to a single sex, the Y or W 
chromosome, such that female-specific markers denote a ZZ/ZW system, whereas male-specific markers suggest 
a XX/XY system. 

We used BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) to query the sex-specific A. expectatus RAD 
markers from Gamble et al. (2015) to the assembled A. praesignis RAD markers. We then aligned sex-specific 
markers found in both species to assess homology and design PCR primers. 

2.3 Validating sex-specific markers 
We PCR-validated a subset of sex-specific markers for four Aristelliger species and visualized the results with gel 
electrophoresis. PCR primers (Table S3) were designed in Geneious (R11, Kearse et al., 2012). We used ten males 
and ten females of A. praesignis, six males and three females of A. lar, eight males and seven females of A. 
expectatus, and one male and two females of A. barbouri. 

One putative W-linked markers appeared to retain high-sequence similarity to homologous regions on the Z 
chromosome, a pattern detectable by amplification in both males and females (Fowler & Buonaccorsi, 2016; 
Gamble et al., 2018). To overcome this, we used a PCR-RFLP assay where primers were designed to span a 
diagnostic female-specific restriction site. The marker is PCR-amplified in both males and females, but only the 
female-specific W allele contains the restriction site. Thus, amplified female PCR amplicons will be cut by the 
restriction enzyme and display multiple bands, whereas male PCR amplicons will display a single band. Following 
amplification, we cleaned the PCR solution with serapure beads, washed it thoroughly with freshly prepared 
85% EtOH and resuspended the amplicon in buffer. We added 1µl of high-fidelity Sbf1 restriction enzyme (New 
England Biolabs) and 5µl of CutSmart Buffer (New England Biolabs), and added nuclease-free water to increase 
the solution volume to 50µl. We incubated the solution at 37ºC for 30 min and 80ºC for 20 min. Following 
restriction digest, we visualized the results on a 1% agarose gel. 

We determined synteny of the Aristelliger sex chromosomes by comparison with the chicken (Gallus gallus) 
genome using BLAST to query female-specific A. expectatus and A. praesignis RAD markers to chicken protein-
coding genes (International Chicken Genome Sequencing Consortium, 2004; Warren et al., 2017). In some cases, 
we used a modest draft assembly of the Gonatodes ferrugineus genome (Gamble et al., 2018) as an intermediary 
BLAST step to identify larger scaffolds before aligning to the chicken genome. Gonatodes ferrugineus is the only 
sphaerodactylid gecko with a genome-scale resource currently available. By identifying syntenic regions, we can 
assess the homology of sex-linked loci among the Aristelliger species; if the markers are found on different 
chicken chromosomes, then a cis-turnover occurred such that a ZZ/ZW (or XX/XY) sex chromosome system in 
one species transitioned to a different ZZ/ZW (or XX/XY) sex chromosome system in another species. If the 
markers map to the same chicken chromosome, this suggests a shared homologous sex chromosome system. 

2.4 Aristelliger phylogeny 
Interpreting our results in an evolutionary framework required a phylogenetic hypothesis for 
sampled Aristelliger species. We PCR-amplified and Sanger-sequenced the mitochondrial gene NADH 
dehydrogenase subunit 2 (ND2) and adjacent tRNAs with the primers L4437b (Macey, Larson, Ananjeva, & 
Papenfuss, 1997), L5005 (Jennings, Pianka, & Donnellan, 2003) and H5934a (Arevalo, Davis, & Sites, 1994). We 



aligned these new sequences with previously published sequences (Gamble, Greenbaum, Jackman, Russell, & 
Bauer, 2012) in Geneious (R9.1.6, Kearse et al., 2012) using MUSCLE (Edgar, 2004) and inspected the resulting 
alignment by eye for errors. We constructed a maximum likelihood tree using RAxML (V8.2, Stamatakis, 2014) 
with a GTR + GAMMA model. Branch support was generated using 1,000 bootstrap replicates. We 
included Quedenfeldtia trachyblepharus and Quedenfeldtia moerens as outgroups. Finally, we calculated 
between-group genetic p-distance for putative species using MEGA X (V10.1, Kumar, Stecher, Li, Knyaz, & 
Tamura, 2018). 

2.5 Cytogenetics 
Chromosome spreads from two males and two females of A. expectatus were prepared from fibroblasts 
established from tail clips following published lizard cell culture protocols (Ezaz et al., 2008; Gamble, Geneva, 
Glor, & Zarkower, 2014; Main, Scantlebury, Zarkower, & Gamble, 2012). Fibroblasts were grown at 28–31°C in 
media containing DMEM 1X (Invitrogen) with 4.5 g/L glucose and L-glutamine without sodium pyruvate, 20% 
foetal bovine serum and anti–anti (Invitrogen), which contains penicillin, streptomycin and amphotericin. Cells 
were arrested in metaphase using vinblastine sulphate (1 mg/ml), collected after trypsin digestion and 
incubated in a 0.07 M KCl hypotonic solution for 20 min in a 37°C water bath. Cells were fixed and washed in 
methanol:acetic acid (3:1). Cell suspensions were then dropped onto clean glass slides, allowed to air-dry and 
dehydrated in an ethanol series (70%, 95%, 100%). Slides were stained with DAPI (4,6-diamidino-2-phenylindole) 
and mounted with PermaFluor (Lab Vision) and a cover slip. All slides were photographed on a Zeiss Imager Z1 
microscope using a Zeiss MRm camera. Images were captured using Zeiss AxioVision software. 

We assessed the accumulation of repetitive DNA sequences on the putative sex chromosome by hybridizing a 
fluorescently labelled GATA satellite repeat onto metaphase spreads. The GATA satellite repeat, also called the 
Bkm satellite repeat, has been shown to accumulate onto the sex chromosomes of multiple animal species and 
is a good candidate marker for identifying sex chromosomes (Jones & Singh, 1981; Nanda et al., 1990; O’Meally 
et al., 2010; Perry et al., 2018; Singh, Purdom, & Jones, 1980). (GATA)n probes were generated by PCR in the 
absence of template DNA (Ijdo, Wells, Baldini, & Reeders, 1991) using (GATA)7 and (TATC)7 primers. Probes were 
labelled via nick translation with ChromaTide/Alexa Fluor fluorescently labelled dUTP 488-5 (Life Technologies). 
We confirmed the sizes of the nick translated fragments by electrophoresis on a 1% TBE gel. Labelled DNA was 
ethanol precipitated and resuspended in 100 μl hybridization buffer (Ezaz et al., 2005), denatured at 72°C for 
10 min and snap-cooled on ice for five minutes. We added 20 μl of probe to each slide, affixed a cover slip using 
rubber cement, heated slides again to 72°C for 5 min and incubated overnight at 37°C. Slides were washed once 
at 60°C in 0.4% SSC and 0.3% Igepal CA-630 (Sigma-Aldrich) for two minutes, followed by a second two-minute 
wash in 2% SSC and 0.1% Igepal CA-630 at room temperature. Slides were dehydrated in an ethanol series (70%, 
95%, 100%) and air-dried. Slides were stained with 4,6-diamidino-2-phenylindole (DAPI) and mounted with a 
cover slip using PermaFluor (Lab Vision). We performed GATA fluorescent in situ hybridization (FISH) 
experiments on male and female slides in parallel and in four replicates to control for batch-related variation in 
hybridization conditions. 

3 RESULTS 
3.1 Identifying ZW sex chromosomes 
We identified 127,937 RAD loci with two or fewer alleles in A. praesignis. Of these, we found 878 female-specific 
markers and no male-specific markers. After checking the female markers against the original male reads, we 
retained 743 ‘confirmed’ female-specific markers. We designed PCR primers for eleven of them, and seven 
amplified in a female-specific pattern (Figure 1), whereas the remaining four failed to amplify in a sex-specific 
manner or did not amplify at all. We found three of these markers also amplified in a sex-specific manner in A. 
lar (Figure 1), which shows both A. praesignis and A. lar share the same ZZ/ZW sex chromosome system. 



 
FIGURE 1 PCR validation of female-specific RADseq markers in (a) Aristelliger praesignis and (b) Aristelliger lar. 
Specimen identification numbers are listed below. (c) Photograph of A. praesignis 
 

We used BLAST to identify four female-specific A. praesignis RAD markers that contained fragments of chicken 
protein-coding genes (Table 1). Three of these genes are on chicken chromosome 2 and one on chicken 
chromosome 33. Using the G. ferrugineus genome as an intermediate step, we discovered one additional A. 
praesignis female-specific RAD marker near the ZNRF2 gene, also on chicken chromosome 2. PCR primers 
amplified in a sex-specific manner for two of these genes: MSANTD3 and ZNRF2. A third gene, EPC1, amplified in 
both females and males but contained a diagnostic female-specific restriction site, and we used PCR-RFLP to 
visual differences between males and females. EPC1 and ZNRF2 are found on the p arms of chicken chromosome 
2, and MSANTD3 is found on the q arms of chicken chromosome 2 (Figure 2). All three 
genes, EPC1, ZNRF2 and MSANTD3, are located on chromosome 6 in Anolis carolinensis. Two of the three 
loci, MSANTD3 and EPC1, were sex-linked in all four Aristelliger species, although with slightly different banding 
patterns; MSANTD3 produced a single band only in females (Figure 2c), whereas EPC1, following a post-PCR 
restriction digest with enzyme Sbf1, produced two bands in females (the smaller of which varied in intensity) 
and a single band in males (Figure 2d). ZNRF2 amplified in a female-specific manner for A. lar and A. 
praesignis but failed to amplify in A. expectatus or A. barbouri (Figure 2b). 

TABLE 1. Results from BLAST of the female-specific Aristelliger praesignis RAD contigs queried against chicken 
(Gallus gallus) genes demonstrating synteny with avian chromosome 2 

Ensembl ID Gene Gallus chromosome E value A. praesignis query 
ENSGALG00000013403 MSANTD3 2 4.29E−88 Ap_727 
ENSGALG00000048612 RPS26 33 6.07E−87 Ap_289 
ENSGALG00000007435 RAB18 2 4.15E−76 Ap_450 
ENSGALG00000007169  2 3.80E−70 Ap_138 

 

 
FIGURE 2 (a) Maximum likelihood phylogeny of the mitochondrial ND2 gene showing phylogenetic relationships 
among sampled Aristelliger taxa. Bootstrap values are shown on branches. The phylogeny was rooted 
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with Quedenfeldtia. PCR validation for sex-specific markers ZNRF2 (b), MSANTD3 (c) and EPC1 (d) in A. 
praesignis, A. lar, A. expectatus and A. barbouri. Sex-specific amplification is denoted by the presence of a band 
in females and lack of a band in males (b and c), or by the presence of a second band in females following 
a Sbf1 restriction digest (d, shown by black arrow). MSANTD3 and EPC1 were sex-specific in all four species, 
and ZNRF2 was sex-specific in A. praesignis and A. lar. For ease of viewing, two males and two females were 
used for validation in all species except for A. barbouri, for which only a single male tissue was available. (e) 
Approximate location of EPC1, ZNRF2 and MSANTD3 on chicken chromosome 2 
 

3.2 Phylogenetic results 
The mitochondrial maximum likelihood phylogeny inferred two major Aristelliger clades (Figure 2a). One 
corresponds to the subgenus Aristelligella (Noble & Klingel, 1932), containing A. expectatus and A. barbouri. The 
second clade, subgenus Aristelliger, contains A. praesignis, A. lar and A. georgeensis (due to a lack of available 
samples, the latter was not included in the sex chromosome system part of this study). We recovered three 
clades corresponding to A. expectatus that are rendered paraphyletic by A. barbouri. The A. expectatus clade 3 is 
most closely related to A. barbouri, and these two sister clades had the lowest between-group p-distance (0.159, 
Table 2). All branches were highly supported (BS > 90), except for the divergence of A. barbouri and A. 
expectatus clade 3 from A. expectatus clade 2 (Figure 2). 



TABLE 2. Between-group genetic p-distances for a fragment of the mitochondrial ND2 gene. Aristelliger expectatus was split into three clades 
corresponding to the mtDNA phylogeny (Figure 2) 

 Q. 
moerens 

Q. 
trachyblepharus 

A. 
georgensis 

A. 
praesignis 

A. lar A. expectatus 
clade 1 

A. expectatus 
clade 2 

A. expectatus 
clade 3 

A. 
barbouri 

Q. Moerens           
Q. trachyblepharus 0.140 

 
        

A. georgensis 0.310 0.310        
A. praesignis 0.291 0.284 0.130       
A. lar 0.300 0.292 0.155 0.139      
A. expectatus clade 1 0.305 0.303 0.218 0.215 0.233     
A. expectatus clade 2 0.318 0.297 0.239 0.228 0.229 0.166    
A. expectatus clade 3 0.331 0.312 0.235 0.226 0.224 0.163 0.165   
A. barbouri 0.412 0.393 0.259 0.292 0.292 0.196 0.188 0.159  

 



3.3 Cytogenetics 
Examination of mitotic cells from four A. expectatus individuals revealed a diploid number of 30, with three pairs 
of large metacentric chromosomes, one large acrocentric pair and eleven pairs of acrocentric/biarmed 
chromosomes gradually decreasing in size (Figure 3). Roughly half of the examined cells had a complete 
chromosomal complement: females—TG1447 (13 of 24) and TG1449 (1 of 2); males—TG1448 (12 of 24) and 
TG1451 (4 of 6). 

 
FIGURE 3 (a) Karyotype (2n = 30) of a male Aristelliger expectatus (TG1448). Fluorescent in situ hybridization 
(FISH) of the GATA minisatellite to chromosomes of a male (b; TG1451) and two female Aristelliger 
expectatus (c; TG1447; d; TG1449). GATA hybridization (green) is sex-specific, occurring only on the distal arms 
of the W chromosome. Solid lines indicate magnified views of areas in dashed lines. Scale bars = 20 μm 
 

The GATA satellite repeat hybridized to the distal arms of a single small, biarmed chromosome in female cells 
with no GATA hybridization in male cells (Figure 3). This pattern held for incomplete cells as well, and we did not 
observe any GATA hybridization in any male cells: TG1448 (8 cells) and TG1451 (6 cells). Similarly, we did not 
observe more than a single chromosome with GATA hybridization in nonoverlapping female cells: TG1447 (16 
cells) and TG1449 (2 cells). The observed pattern of a single chromosome possessing GATA signal in females with 
no concomitant signal in males is consistent with a ZZ/ZW sex chromosome system with the W being the GATA 
hybridized chromosome. The size and shape of the ZW pair are most consistent with pair eight but given that 
there are no other apparent differences among the Z and W chromosomes exact identification is not possible at 
this time. 

4 DISCUSSION 
Our results demonstrate that all Aristelliger species studied to date possess a ZZ/ZW sex chromosome system. 
Furthermore, because the species studied here encompass the phylogenetic breadth of the genus (Hecht, 1952), 
we can conservatively hypothesize that all Aristelliger species share an ancestral ZZ/ZW sex chromosome system 
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homologous to chicken chromosome 2 and Anolis chromosome 6. The large number of female-specific markers 
in A. praesignis (743 ‘confirmed’ female-specific RAD markers) suggests that the Z and W chromosomes are 
highly differentiated from one another in this species. Additionally, the accumulation of GATA repeats on the W 
chromosome of A. expectatus is indicative of nascent deterioration, and similar patterns have been observed on 
the sex chromosomes of many plant and animals species (Gamble et al., 2014; Jones & Singh, 1981; Marais 
et al., 2008; Nanda et al., 1990; O’Meally et al., 2010; Parasnis, Ramakrishna, Chowdari, Gupta, & 
Ranjekar, 1999; Schäfer, Böltz, Becker, Bartels, & Epplen, 1986; Singh et al., 1980). This suggests that although 
the Aristelliger W chromosome has begun to accumulate repetitive sequences and sex-specific mutations, it has 
yet to purge mutation-rich regions to produce a morphologically distinct, or heteromorphic, W chromosome as 
seen in some other groups such as birds or Lepidoptera (Charlesworth & Charlesworth, 2000). 

Homomorphic sex chromosomes are not necessarily young or lacking degeneration but are simply 
cytogenetically indistinguishable. For example, flightless ratite birds, such as ostriches and emus, have 
maintained homomorphic sex chromosomes for approximately 100 million years (Ogawa, Murata, & 
Mizuno, 1998; Zhou et al., 2014), whereas the homologous sex chromosomes of other bird taxa are 
heteromorphic (Zhou et al., 2014). It is thus possible for a sex chromosome pair to have distinct gene content 
and significant allelic differences even though they appear to be morphologically similar (Conte, Gammerdinger, 
Bartie, Penman, & Kocher, 2017; Fontaine et al., 2017; Gamble et al., 2014; Perry et al., 2018; Toups, Rodrigues, 
Perrin, & Kirkpatrick, 2019; Zhou et al., 2014), including the Aristelliger sex chromosomes presented here. 
Indeed, there are examples in the literature of sex chromosomes exhibiting various combinations of genetic 
differentiation and chromosomal morphology (Darolti et al., 2019; Gamble et al., 2014; Kamiya et al., 2012; 
Kottler et al., 2020; Lahn & Page, 1999; Zhou et al., 2014). Thus, the overly simplistic distinction between 
homomorphic and heteromorphic sex chromosomes that emerged when cytogenetics was the prevailing 
technology may fail to describe the continuum of differences between gametologs that can be distinguished 
using DNA sequence data (Furman et al., 2020). As the sex chromosomes of more and more species are 
identified using DNA sequences, it may be more useful and accurate to simply describe the degree of genetic 
differentiation between gametologs. The terms homomorphic and heteromorphic may then resume their 
historical cytogenetic definition. 

Previous work reported that A. expectatus possessed a ZZ/ZW sex chromosome system based on 10 ‘confirmed’ 
female-specific RAD markers (Gamble et al., 2015). Comparatively, we here report 743 ‘confirmed’ female-
specific markers for A. praesignis. The substantially lower number of female-specific markers within A. 
expectatus might be explained by cryptic diversity within the former as samples from Gamble et al. (2015) can 
be allocated to all three A. expectatus clades. Although Gamble et al. (2015) analysed all samples as a single 
taxon, our phylogenetic results suggest that A. expectatus sensu lato is composed of at least three distinct 
(species-level) lineages (Figure 2—see below). Although the RADseq methodology used herein has a fairly high 
success rate, the bioinformatic pipeline may be sensitive to overly divergent samples. The sex-specific 
chromosomes (the Y and W) have a higher evolutionary rate than autosomes due to a lack of recombination and 
smaller effective population sizes that allow deleterious or nonsynonymous mutations to become fixed (Berlin & 
Ellegren, 2006; Ellegren, 2011). Thus, the Aristelliger W chromosome may accumulate species-specific mutations 
faster than the autosomes. The bioinformatic pipeline identifies W alleles shared among all sampled females 
and will not identify sex-specific alleles unique to any one of the three putative species when analysed together. 
We do not have sufficient sampling to analyse the A. expectatus clades individually but we suspect that there 
are many more lineage-specific sex-specific RAD markers that remain unidentified. However, we here show that 
this methodology can prove successful even with highly divergent samples (see also Hundt, Liddle, Nielsen, 
Pinto, & Gamble, 2019; Nielsen, Pinto, Guzmán-Méndez, & Gamble, 2020). Although we would not expect to 
find shared sex-specific RAD markers in all cases, these results should be encouraging in cases where samples 
are of uncertain taxonomic placement, not geographically proximate, or might have elevated genetic diversity. 



However, in species with highly polymorphic Y or W chromosomes, these methods may result in a lower number 
of sex-specific RAD markers or, worst-case scenario, no markers at all. Further investigation is needed to 
examine the power of this approach among divergent populations and/or species. 

Aristelliger expectatus is likely comprised of cryptic diversity. Genetic distances among the sampled A. 
expectatus mitochondrial clades were comparable to genetic distances between recognized gecko sister species, 
which typically range from 4.1% to 35.5% using the same fragment of the mitochondrial ND2 gene (Botov 
et al., 2015; Grismer et al., 2014; Oliver, Hutchinson, & Cooper, 2007; Pepper, Doughty, & Keogh, 2006; Portik, 
Travers, Bauer, & Branch, 2013). This discovery is not unusual as molecular phylogenies have regularly 
uncovered undescribed species in other Neotropical gecko taxa (Daza et al., 2019; Hedges & Conn, 2012; Pinto 
et al., 2019). Integrative taxonomy combining multi-locus phylogenetics and a re-examination of morphology is 
needed to formally describe these taxa. 

The 2n = 30 karyotype of A. expectatus is unique among sphaerodactylid geckos (Table S3). It can be derived 
from a 2n = 36 karyotype of all acrocentric chromosomes, like that of the sphaerodactylid 
genera Teratoscincus (Manilo, 1993; Zeng et al., 1998) or Chatogekko (dos Santos, Bertolotto, Pellegrino, 
Rodrigues, & Yonenaga-Yassuda, 2003), by a series of three centric fusions. This would result in three pairs of 
large metacentric chromosomes and a reduction of chromosome number from 2n = 36 to 2n = 30. King (1987) 
indicated the lack of cytogenetic data for sphaerodactylid genera made it premature to evaluate cytogenetic 
evolution and ancestral chromosome number in the clade and the same is still true today. Collecting cytogenetic 
data for additional sphaerodactylid genera should be a high priority to better understand the chromosomal 
evolution in the group. 

Chicken chromosome 2/Anolis 6 is homologous to the sex-linked chromosome in Python bivittatus (Gamble 
et al., 2017) and caenophidian snakes (Matsubara et al., 2006; Vicoso, Emerson, Zektser, Mahajan, & 
Bachtrog, 2013). Having become sex-linked in three independent squamate lineages, this linkage group appears 
to be a frequent sex chromosome candidate. It is possible the ancestral autosome contained some genomic 
content that makes it more likely to serve a sex determination function in multiple unrelated taxa (Graves & 
Peichel, 2010; O’Meally, Ezaz, Georges, Sarre, & Graves, 2012). This linkage group may harbour a gene (or 
multiple genes) involved in the sex differentiation pathway that has been co-opted to act as the master sex 
determination gene controlling the entire cascade of regulatory networks (Herpin & Schartl, 2015). Among other 
reptiles, this potential sex-determining gene (or genes) might merely work within the confines of the sex 
differentiation pathway, but within Aristelliger, pythons and caenophidian snakes it has moved to the top of the 
determination pathway. Chicken chromosome 2 does not have any of the ‘usual suspects’ for sex determination, 
such as DMRT1, FOXL2 or SOX3, but it does contain CTNNB1, a gene required for ovarian development (Liu, 
Bingham, Parker, & Yao, 2008), and SRD5A1, required for spermatogenesis and sexual differentiation 
(O’Donnell, Stanton, Wreford, Robertson, & McLachlan, 1996). However, for the moment, the sex-determining 
genes for all three groups remain unknown. 

We here confirm a common origin of sex chromosomes in the most recent common ancestor of 
extant Aristelliger species, although the exact timing and circumstances of their origin remain unknown. Given 
that Aristelliger boast a ZZ/ZW sex chromosome system, yet other members of the Sphaerodactylidae exhibit 
the XX/XY condition, at least one turnover has occurred within the family, and possibly more if the XX/XY sex 
chromosome systems of Sphaerodactylus, Gonatodes and Euleptes are independently derived. In order to infer 
the age of the Aristelliger ZZ/ZW sex chromosomes and the directionality of sphaerodactylid sex chromosome 
turnovers, future work should aim to increase the sampling of sex chromosome systems among sphaerodactylid 
geckos, particularly for Quedenfeldtia, the closest relative of Aristelliger (Gamble et al., 2008). Such an 
investigation will allow us to better understand the behaviour of gecko sex chromosomes and the evolution of 
sex chromosomes as a whole. 
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