671 research outputs found

    Macroscopic Observables Detecting Genuine Multipartite Entanglement and Partial Inseparability in Many-Body Systems

    Full text link
    We show a general approach for detecting genuine multipartite entanglement (GME) and partial inseparability in many-body-systems by means of macroscopic observables (such as the energy) only. We show that the obtained criteria, the "GME gap" and "the k-entanglement gap", detect large areas of genuine multipartite entanglement and partial entanglement in typical many body states, which are not detected by other criteria. As genuine multipartite entanglement is a necessary property for several quantum information theoretic applications such as e.g. secret sharing or certain kinds of quantum computation, our methods can be used to select or design appropriate condensed matter systems.Comment: 4 pages, 3 figures, published version, title extende

    Fractal diffusion coefficient from dynamical zeta functions

    Full text link
    Dynamical zeta functions provide a powerful method to analyze low dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand even simple one dimensional maps can show an intricate structure of the grammar rules that may lead to a non smooth dependence of global observable on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.Comment: 8 pages, 2 figure

    Deep Electrical Resistivity Tomography for the Hydrogeological Setting of Muro Lucano Mounts Aquifer (Basilicata, Southern Italy)

    Get PDF
    The proposed work concerns the application of a deep geoelectrical survey to a carbonate aquifer in order to define the best location for exploitation well drilling for increasing water supply. However, an optimal characterization of a groundwater resource is the necessary condition to reach the indicated aim. Therefore, the geoelectrical investigation was guided from the previous geological and hydrogeological characterization. Moreover, geophysical methods are good tools to improve the groundwater model when detailed information is necessary, such as the localization of a pumping well. The work summarizes the hydrogeological knowledge at the West of the Basilicata Region (Muro Lucano, Italy). The investigated area is characterized by the presence of a karst aquifer which is made up of a carbonate ridge (Castelgrande, Muro Lucano) that tectonically dips southward and is widely covered by Pliocene deposits (sands and conglomerates), by the Irpinian unit and Sicilide unit formations, and by debris slope and landslide deposits. The assessment of the complex hydrogeological framework of the area was detailed by the use of a new multichannel deep geoelectrical technique (DERT). In details, the proposed technique was able to successfully locate a less resistive zone connected to a more fractured limestone and then it was suitable for the localization of a groundwater exploitation well

    Mixtures of strongly interacting bosons in optical lattices

    Full text link
    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of K induces a significant loss of coherence in Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.Comment: 10 pages, 3 figures; some changes in the text and abstract have been introduced; coherence now given in terms of visibility; a couple of new reference adde

    Unconventional quantum phases of lattice bosonic mixtures

    Full text link
    We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy "quantum emulsion" metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight images in the case of these spontaneously disordered states.Comment: 10 pages, 2 figures - to appear in the topical issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases" of the European Physical Journal B (2009

    First report on Copepoda and Ostracoda (Crustacea) from northern Apenninic springs (N. Italy): a faunal and biogeographical account

    Get PDF
    The microcrustacean fauna of rheocrene and rheo-limnocrene springs in a protected area of the northern Apennines (Italy) was investigated for the first time. All springs are located in the catchments of the rivers Parma and Enza at altitudes between 800 and 1609 m a.s.l. Several of these springs are still in pristine condition while others are artificially modified or impacted to some degree. Surveys were carried out from April to June 2007. The sampling methods used for invertebrate fauna were: moss washing, artificial traps, and inserting drift tubes at the discharge point. A total of 14 harpacticoid, five cyclopoid, and 13 ostracod taxa were identified. Ostracods were mainly represented by crenophilic taxa; of particular interest was the collection of a specimen belonging to Pseudolimnocythere, a stygobiont genus with only two living species and a reduced distribution. Faunal affinities between northern Apenninic springs and those in other Italian mountain systems are discussed. The investigated ecosystems support a high microcrustacean diversity that must be adequately preserved due to the increasing direct and indirect impacts on mountain springs and groundwater resources

    On the notion of conditional symmetry of differential equations

    Full text link
    Symmetry properties of PDE's are considered within a systematic and unifying scheme: particular attention is devoted to the notion of conditional symmetry, leading to the distinction and a precise characterization of the notions of ``true'' and ``weak'' conditional symmetry. Their relationship with exact and partial symmetries is also discussed. An extensive use of ``symmetry-adapted'' variables is made; several clarifying examples, including the case of Boussinesq equation, are also provided.Comment: 18 page

    Correlations and charge distributions of medium heavy nuclei

    Get PDF
    The effects of long- and short-range correlations on the charge distributions of some medium and heavy nuclei are investigated. The long-range correlations are treated within the Random Phase Approximation framework and the short-range correlations with a model inspired to the Correlation Basis Function theory. The two type of correlations produce effects of the same order of magnitude. A comparison with the empirical charge distribution difference between 206Pb and 205Tl shows the need of including both correlations to obtain a good description of the data.Comment: 20 pages, Latex, accepted for publication in Jour. Phys.

    Multipartite Entanglement and Frustration

    Full text link
    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration arises. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.Comment: 15 pages, 7 figure
    • …
    corecore