5,024 research outputs found

    Quantum radiation from superluminal refractive index perturbations

    Full text link
    We analyze in detail photon production induced by a superluminal refractive index perturbation in realistic experimental operating conditions. The interaction between the refractive index perturbation and the quantum vacuum fluctuations of the electromagnetic field leads to the production of photon pairs.Comment: 4 page

    Spacetime geometries and light trapping in travelling refractive index perturbations

    Full text link
    In the framework of transformation optics, we show that the propagation of a locally superluminal refractive index perturbation (RIP) in a Kerr medium can be described, in the eikonal approximation, by means of a stationary metric, which we prove to be of Gordon type. Under suitable hypotheses on the RIP, we obtain a stationary but not static metric, which is characterized by an ergosphere and by a peculiar behaviour of the geodesics, which are studied numerically, also accounting for material dispersion. Finally, the equation to be satisfied by an event horizon is also displayed and briefly discussed.Comment: 14 pages, 7 figure

    Analogue Gravity and ultrashort laser pulse filamentation

    Full text link
    Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a moving refractive index perturbation which modifies the space-time geometry as seen by co-propagating light rays. We study the analogue geometry induced by the filament and show that one of the most evident features of filamentation, namely conical emission, may be precisely reconstructed from the geodesics. We highlight the existence of favorable conditions for the study of analogue black hole kinematics and Hawking type radiation.Comment: 4 pages, revised versio

    Bimagnon studies in cuprates with Resonant Inelastic X-ray Scattering at the O K edge. II - The doping effect in La2-xSrxCuO4

    Full text link
    We present RIXS data at O K edge from La2-xSrxCuO4 vs. doping between x=0.10 and x=0.22 with attention to the magnetic excitations in the Mid-Infrared region. The sampling done by RIXS is the same as in the undoped cuprates provided the excitation is at the first pre-peak induced by doping. Note that this excitation energy is about 1.5 eV lower than that needed to see bimagnons in the parent compound. This approach allows the study of the upper region of the bimagnon continuum around 450 meV within about one third of the Brilluoin Zone around \Gamma. The results show the presence of damped bimagnons and of higher even order spin excitations with almost constant spectral weight at all the dopings explored here. The implications on high Tc studies are briefly addressed

    Reply to Comment on: Hawking radiation from ultrashort laser pulse filaments

    Full text link
    A comment by R. Schutzhold et al. raises possible concerns and questions regarding recent measurements of analogue Hawking radiation. We briefly reply to the opinions expressed in the comment and sustain that the origin of the radiation may be understood in terms of Hawking emission

    Space-time properties of free motion time-of-arrival eigenstates

    Full text link
    The properties of the time-of-arrival operator for free motion introduced by Aharonov and Bohm and of its self-adjoint variants are studied. The domains of applicability of the different approaches are clarified. It is shown that the arrival time of the eigenstates is not sharply defined. However, strongly peaked real-space (normalized) wave packets constructed with narrow Gaussian envelopes centred on one of the eigenstates provide an arbitrarily sharp arrival time.Comment: REVTEX, 12 pages, 4 postscript figure

    Longitudinal coherence in thermal ghost imaging

    Get PDF
    We show theoretically and experimentally that lensless ghost imaging with thermal light is fully interpretable in terms of classical statistical optics. The disappearance of the ghost image when the object and the reference planes are located at different distances from the source is due to the fading out of the intensity-intensity cross correlation between the two planes. Thus the visibility and the resolution of the ghost image are determined by the longitudinal coherence of the speckle beam, and no quantum explanation is necessary.We show theoretically and experimentally that lensless ghost imaging with thermal light is fully interpretable in terms of classical statistical optics. The disappearance of the ghost image when the object and the reference planes are located at different distances from the source is due to the fading out of the intensity-intensity cross correlation between the two planes. Thus the visibility and the resolution of the ghost image are determined by the longitudinal coherence of the speckle beam, and no quantum explanation is necessary. \ua9 2008 American Institute of Physics

    Monolithic GaAs current-sensitive cryogenic preamplifier for calorimetry applications

    Get PDF
    We have realized low-noise monolithic GaAs preamplifiers using ion- implanted technology , to operate under low temperature and high radiation field conditions. The evaluation of noise, amplitude and timing distributions of a batch taken after first mass-production run is presented. The current-sensitive preamplifier is linear up to 8 mA of input current and able to cope a 2.2 nF detector capacitance, showing fast response ( GBW product ∼ 1.7GHz) and very low series noise. Very good noise performance at LAr temperature is obtained by using large area MESFET ( l · w = 3. 24000μm 2 ) as a head transistor, which exhibits at 8mA standing current and only 10mW power dissipation, intrinsic gain μ = g m · r ds = 15 and noise referred to the input 0.30 ÷ 0.35 H z n ¯ V According to our estimation, second stage noise contribution is negligible. Radiation damage from neutrons and γ-irradiations as well as protection network against HV discharges are discussed

    Multiple double-exchange mechanism by Mn2+^{2+}-doping in manganite compounds

    Full text link
    Double-exchange mechanisms in RE1x_{1-x}AEx_{x}MnO3_{3} manganites (where RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies on the strong exchange interaction between two Mn3+^{3+} and Mn4+^{4+} ions through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions has ever been considered "silent" with respect to the DE conducting mechanisms. Here we show that a new path for DE-mechanism is indeed possible by partially replacing the RE-AE elements by Mn2+^{2+}-ions, in La-deficient Lax_{x}MnO3δ_{3-\delta} thin films. X-ray absorption spectroscopy demonstrated the relevant presence of Mn2+^{2+} ions, which is unambiguously proved to be substituted at La-site by Resonant Inelastic X-ray Scattering. Mn2+^{2+} is proved to be directly correlated to the enhanced magneto-transport properties because of an additional hopping mechanism trough interfiling Mn2+^{2+}-ions, theoretically confirmed by calculations within the effective single band model. The very idea to use Mn2+^{2+} both as a doping element and an ions electronically involved in the conduction mechanism, has never been foreseen, revealing a new phenomena in transport properties of manganites. More important, such a strategy might be also pursed in other strongly correlated materials.Comment: 6 pages, 5 figure

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure
    corecore