5,810 research outputs found

    A Preliminary Look at the Physics Reach of a Solar Neutrino TPC: Time-Independent Two Neutrino Oscillations

    Get PDF
    This paper will discuss the physics reach of a solar neutrino TPC containing many tons of He4 under high pressure. Particular attention is given to the LMA and SMA solutions, which are allowed by current data, and which are characterized by a lack of time-dependent phenomena (either summer-winter or day-night asymmetries). In this case, the physics of neutrino masses and mixing is all contained in the energy dependence of the electron neutrino survival probability, (or in its reciprocal, the electron neutrino disappearance probability).Comment: 19 pages, 12 figure

    Extinction Rates for Fluctuation-Induced Metastabilities : A Real-Space WKB Approach

    Full text link
    The extinction of a single species due to demographic stochasticity is analyzed. The discrete nature of the individual agents and the Poissonian noise related to the birth-death processes result in local extinction of a metastable population, as the system hits the absorbing state. The Fokker-Planck formulation of that problem fails to capture the statistics of large deviations from the metastable state, while approximations appropriate close to the absorbing state become, in general, invalid as the population becomes large. To connect these two regimes, a master equation based on a real space WKB method is presented, and is shown to yield an excellent approximation for the decay rate and the extreme events statistics all the way down to the absorbing state. The details of the underlying microscopic process, smeared out in a mean field treatment, are shown to be crucial for an exact determination of the extinction exponent. This general scheme is shown to reproduce the known results in the field, to yield new corollaries and to fit quite precisely the numerical solutions. Moreover it allows for systematic improvement via a series expansion where the small parameter is the inverse of the number of individuals in the metastable state

    Optical Superradiance from Nuclear Spin Environment of Single Photon Emitters

    Full text link
    We show that superradiant optical emission can be observed from the polarized nuclear spin ensemble surrounding a single photon emitter such as a single quantum dot (QD) or Nitrogen-Vacancy (NV) center. The superradiant light is emitted under optical pumping conditions and would be observable with realistic experimental parameters.Comment: 4+ pages, 3 figures, considerably rewritten, conclusions unchanged, accepted versio

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure

    Probing protoplanetary disks with silicate emission: Where is the silicate emission zone?

    Get PDF
    Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with the spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 ÎŒm silicate feature peak-to-continuum and 11.3 to 9.8 ÎŒm flux ratios, is inversely proportional to log Lsstarf. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R10, of the 10 ÎŒm silicate emission zone in the disk goes as (L*/L☉)^0.56, with slight variations depending on disk geometry (flaring angle and inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a dependence of grain size on luminosity. Combined with the fact that R10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminosity sources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T > 800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands

    H_2 and CO Emission from Disks around T Tauri and Herbig Ae Pre-Main-Sequence Stars and from Debris Disks around Young Stars: Warm and Cold Circumstellar Gas

    Get PDF
    We present ISO Short-Wavelength Spectrometer observations of H_2 pure-rotational line emission from the disks around low- and intermediate-mass pre-main-sequence stars as well as from young stars thought to be surrounded by debris disks. The pre-main-sequence sources have been selected to be isolated from molecular clouds and to have circumstellar disks revealed by millimeter interferometry. We detect "warm" (T ≈100-200 K) H_2 gas around many sources, including tentatively the debris-disk objects. The mass of this warm gas ranges from ~ 10^(-4) M_☉ up to 8 x 10^(-3) and can constitute a nonnegligible fraction of the total disk mass. Complementary single-dish ^(12)CO 3-2/^(13)CO 3-2, and ^(12)CO 6-5 observations have been obtained as well. These transitions probe cooler gas at T ≈ 20-80 K. Most objects show a double-peaked CO emission profile characteristic of a disk in Keplerian rotation, consistent with interferometer data on the lower J lines. The ratios of the ^(12)CO 3-2/^(13)CO 3-2 integrated fluxes indicate that ^(12)CO 3-2 is optically thick but that ^(13)CO 3-2 is optically thin or at most moderately thick. The ^(13)CO 3-2 lines have been used to estimate the cold gas mass. If a H_2/CO conversion factor of 1 x 10^(-4) is adopted, the derived cold gas masses are factors of 10-200 lower than those deduced from 1.3 millimeter dust emission assuming a gas/dust ratio of 100, in accordance with previous studies. These findings confirm that CO is not a good tracer of the total gas content in disks since it can be photodissociated in the outer layers and frozen onto grains in the cold dense part of disks, but that it is a robust tracer of the disk velocity field. In contrast, H_2 can shield itself from photodissociation even in low-mass "optically thin" debris disks and can therefore survive longer. The warm gas is typically 1%-10% of the total mass deduced from millimeter continuum emission, but it can increase up to 100% or more for the debris-disk objects. Thus, residual molecular gas may persist into the debris-disk phase. No significant evolution in the H_2 CO, or dust masses is found for stars with ages in the range of 10^6-10^7 yr, although a decrease is found for the older debris-disk star ÎČ Pictoris. The large amount of warm gas derived from H_2 raises the question of the heating mechanism(s). Radiation from the central star as well as the general interstellar radiation field heat an extended surface layer of the disk, but existing models fail to explain the amount of warm gas quantitatively. The existence of a gap in the disk can increase the area of material influenced by radiation. Prospects for future observations with ground- and space-borne observations are discussed

    Evolution on a Rugged Landscape:Pinning and Aging

    Full text link
    Population dynamics on a rugged landscape is studied analytically and numerically within a simple discrete model for evolution of N individuals in one-dimensional fitness space. We reduce the set of master equations to a single Fokker-Plank equation which allows us to describe the dynamics of the population in terms of thermo-activated Langevin diffusion of a single particle in a specific random potential. We found that the randomness in the mutation rate leads to pinning of the population and on average to a logarithmic slowdown of the evolution, resembling aging phenomenon in spin glass systems. In contrast, the randomness in the replication rate turns out to be irrelevant for evolution in the long-time limit as it is smoothed out by increasing ``evolution temperature''. The analytic results are in a good agreement with numerical simulations.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Two State Behavior in a Solvable Model of ÎČ\beta-hairpin folding

    Full text link
    Understanding the mechanism of protein secondary structure formation is an essential part of protein-folding puzzle. Here we describe a simple model for the formation of the ÎČ\beta-hairpin, motivated by the fact that folding of a ÎČ\beta-hairpin captures much of the basic physics of protein folding. We argue that the coupling of ``primary'' backbone stiffness and ``secondary'' contact formation (similar to the coupling between the ``secondary'' and ``tertiary'' structure in globular proteins), caused for example by side-chain packing regularities, is responsible for producing an all-or-none 2-state ÎČ\beta-hairpin formation. We also develop a recursive relation to compute the phase diagram and single exponential folding/unfolding rate arising via a dominant transition state.Comment: Revised versio

    A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins

    Get PDF
    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins avß3, avß5, avß6, avß8, a5ß1, aIIbß3, using homogenous ELISA-like solid phase binding assay.Postprint (published version

    Importance of the Doppler Effect to the Determination of the Deuteron Binding Energy

    Get PDF
    The deuteron binding energy extracted from the reaction 1H(n,Îł)2H{}^1H(n,\gamma){}^2H is reviewed with the exact relativistic formula, where the initial kinetic energy and the Doppler effect are taken into account. We find that the negligible initial kinetic energy of the neutron could cause a significant uncertainty which is beyond the errors available up to now. Therefore, we suggest an experiment which should include the detailed informations about the initial kinetic energy and the detection angle. It could reduce discrepancies among the recently reported values about the deuteron binding energy and pin down the uncertainty due to the Doppler broadening of Îł\gamma ray.Comment: 5 page
    • 

    corecore