31,940 research outputs found

    The Propagation of Quarks in the Spatial Direction in Hot QCD

    Get PDF
    The dynamics of {\it light} fermions propagating in a spatial direction at high temperatures can be described effectively by a two--dimensional Schr\"odinger equation with {\it heavy} effective mass meff=πTm_{\rm eff} = \pi T. Starting from QED, we discuss the transition from three-- to two--dimensional positronium discussing the latter in detail including relativistic effects. In the case of QCD the problem is similar to that of heavy quarkonium. Our effective potential contains the usual Coulomb and confining parts as well as a perturbative spin--spin interaction. The resulting qˉq\bar q q ``wave functions" reproduce recent lattice data for the ρ\rho and π\pi channels. The physical meaning of such `confinement' is related to the non--trivial magnetic interaction of color currents in the quark--gluon plasma. Our results do not contradict the idea that the normal electric interaction of color charges is screened and produces no bound states in the usual sense.Comment: 23 page

    Measuring gravitational lens time delays using low-resolution radio monitoring observations

    Get PDF
    Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observations difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will be important because instruments that have high sensitivity but limited resolution, together with an optimum usage of followup high-resolution observations from appropriate radio telescopes may in the future be useful for gravitational lensing time delay measurements by means of this new method.Comment: 10 pages, 7 figures, accepted by MNRA

    Solitary-wave solutions in binary mixtures of Bose-Einstein condensates under periodic boundary conditions

    Full text link
    We derive solitary-wave solutions within the mean-field approximation in quasi-one-dimensional binary mixtures of Bose-Einstein condensates under periodic boundary conditions, for the case of an effective repulsive interatomic interaction. The particular gray-bright solutions that give the global energy minima are determined. Their characteristics and the associated dispersion relation are derived. In the case of weak coupling, we diagonalize the Hamiltonian analytically to obtain the full excitation spectrum of "quantum" solitary-wave solutions.Comment: 11 pages, 2 figure

    Solitary waves of Bose-Einstein condensed atoms confined in finite rings

    Full text link
    Motivated by recent progress in trapping Bose-Einstein condensed atoms in toroidal potentials, we examine solitary-wave solutions of the nonlinear Schr\"odinger equation subject to periodic boundary conditions. When the circumference of the ring is much larger than the size of the wave, the density profile is well approximated by that of an infinite ring, however the density and the velocity of propagation cannot vanish simultaneously. When the size of the ring becomes comparable to the size of the wave, the density variation becomes sinusoidal and the velocity of propagation saturates to a constant value.Comment: 6 pages, 2 figure

    Solitary waves in mixtures of Bose gases confined in annular traps

    Full text link
    A two-component Bose-Einstein condensate that is confined in a one-dimensional ring potential supports solitary-wave solutions, which we evaluate analytically. The derived solutions are shown to be unique. The corresponding dispersion relation that generalizes the case of a single-component system shows interesting features.Comment: 4 pages, 1 figur
    corecore