620 research outputs found

    Phase structure and confinement properties of noncompact gauge theories I

    Get PDF
    In the context of reviewing noncompact lattice gauge models at zero and finite temperature we study in detail a contribution of the invariant measure and the time-like plaquette configurations to correlation functions, analyze the problem of the compactness of the potentials in respect to the confinement and indicate the essential features to deal with the Wilson gauge theory in the weak coupling region. A method for calculating an effective confining noncompact model is also proposed.Comment: Latex file, 24 pages, no figure

    Dissolved silicon and nitrogen in glacial rivers and water of Blago bay (Russian Arctic, Novaya Zemlya): origin, variability and spreading

    Get PDF
    Hydrochemical studies of watercourses and the water area of Blagopoluchia bay (Novaya Zemlya, Arctic, Russia) have been carried out. The concentrations of nutrients in rivers and streams are higher than those in the water area of Blagopoluchia bay. It is shown that the concentration of silicon in constantly flowing rivers is 1–13 μM, the concentration of NO3 — 0.5–8, for small and temporary streams these values are higher and are in the range of 18–46 μM Si, 1–11 μM NO3– . The influence of streams and rivers flowing into Blagopoluchia Bay on the water area of the bay is local and extends to 1 km from the mouth, and does not influence the Kara Sea nutrient content.Hydrochemical studies of watercourses and the water area of Blagopoluchia bay (Novaya Zemlya, Arctic, Russia) have been carried out. The concentrations of nutrients in rivers and streams are higher than those in the water area of Blagopoluchia bay. It is shown that the concentration of silicon in constantly flowing rivers is 1–13 μM, the concentration of NO3 — 0.5–8, for small and temporary streams these values are higher and are in the range of 18–46 μM Si, 1–11 μM NO3– . The influence of streams and rivers flowing into Blagopoluchia Bay on the water area of the bay is local and extends to 1 km from the mouth, and does not influence the Kara Sea nutrient content

    The phase transitions in 2D Z(N) vector models for N>4

    Full text link
    We investigate both analytically and numerically the renormalization group equations in 2D Z(N) vector models. The position of the critical points of the two phase transitions for N>4 is established and the critical index \nu\ is computed. For N=7, 17 the critical points are located by Monte Carlo simulations and some of the corresponding critical indices are determined. The behavior of the helicity modulus is studied for N=5, 7, 17. Using these and other available Monte Carlo data we discuss the scaling of the critical points with N and some other open theoretical problems.Comment: 19 pages, 8 figures, 10 tables; version to appear on Phys. Rev.

    Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature

    Full text link
    We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4 exploiting equivalence of these models with a generalized version of the two-dimensional vector Potts models in the limit of vanishing spatial coupling. In this limit the Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.Comment: 28 pages, 12 figures, 12 tables; version to appear on Phys. Rev.

    Critical behavior of 3D Z(N) lattice gauge theories at zero temperature

    Get PDF
    Three-dimensional Z(N)Z(N) lattice gauge theories at zero temperature are studied for various values of NN. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N)Z(N) model for N=2,3,4,5,6,8N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96L=96. We locate the critical points of phase transitions and establish their scaling with NN. The values of the critical indices indicate that the models with N>4N>4 belong to the universality class of the three-dimensional XYXY model. However, the exponent α\alpha derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle. We also demonstrate the existence of a rotationally symmetric region within the ordered phase for all N5N\geq 5 at least in the finite volume.Comment: 25 pages, 4 figures, 8 table

    A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    Get PDF
    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed
    corecore