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1 Introduction

Since K. Wilson proposed [1] twenty years ago to quantize the �eld theory on a lattice in

the Euclidean space-time with an exact gauge invariance in order to make the strong

coupling calculations, the lattice approach combined especially with the numerical

Monte Carlo simulations has provided a huge progress of the quantum chromodynam-

ics (QCD). However, the problem of a con�nement mechanism did not become less

intriguing because a conceptually simple mechanism in strong coupling regime could

not proceed along the same line to the continuum theory. The principal di�culties here

is to de�ne the proper con�gurations (monopoles, vortices,...) of the compact lattice

gauge �elds which are the most essential ones for forming the con�ning forces, and how

one may identify them in the continuum theory?

In this paper we make an attempt to advance this question again constructing an

e�ective noncompact model starting from the lattice gauge theory (LGT) and aiming

to analyze the weak coupling region. Generally speaking one should presuppose the ex-

istence of the only mechanism of con�nement both on the lattice and in the continuum,

in order to address this problem unambiguously. Because it is not obvious, one must
argue the pro�ered statement. We shall come back to this point later, accepting this
as conjecture for now. Besides, we need to develop an ingenious approach to construct
an adequate quantum theory of noncompact potentials starting from compact LGT.

Seems, such a possibility does exist. Exploring the lattice models which are ana-
lytically solvable in a sense and exhibit the con�nement property, we could identify

the important con�gurations and construct their correct noncompact limit (of course,
if it exists). This is the principal strategy of the following paper. As the �rst step,
we elaborate the chromoelectric part of the Wilson action (WA) which states in this
approach the existence of con�ning forces in the low temperature phase. However, the
quantum noncompact lattice theory based on the naive limit 3 of the chromoelectric

part of WA does not possess this property compelling to analyze a nonperturbative
limit of the model. (One may worry at this point that dealing with the chromoelectric
part of the WA we are trapped by the strong coupling region which could be far away
from the continuum limit. At this stage, however, our goal is to �nd a noncompact
lattice theory which would belong to the same universality class as the compact LGT.

Continuum limit can be accomplished after including the chromomagnetic part of WA

in our scheme).

3Throughout this paper we use the following limits of the lattice theory: 1) naive limit means the

expansion of lattice gauge �eld matrices around the unit matrix and leads to the classical (lattice

or continuum) Yang-Mills action; 2) perturbative limit of Wilson LGT is taken as a limit of vanish-

ing lattice spacing together with small coupling constant expansion and conventional renormalization

procedure done. This limit coincides with the corresponding perturbative expansion of the continuum

theory; 3) nonperturbative limit is de�ned as a limit a ! 0 together with a proper renormalization

procedure after integrating the lattice partition function over con�gurations of the gauge �elds which

are far from the unit matrix and hence are missed in the perturbative expansion; 4) mentioning a

noncompact (perturbative or nonperturbative) limit we mean an e�ective action in terms of noncom-

pact gauge potentials obtained in the limit of a small coupling constant after a partial summation

over compact gauge �elds.
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The strong con�rmation that in such a way we may achieve a desirable e�ective

noncompact model (and even to �nd its continuum quantum limit) one �nds in [2, 3],

where it was shown that con�nement can be obtained in the e�ective model forA0 gauge

�eld only and, in the �rst approximation, we may set space-gauge �elds An equal to

zero. In fact, the e�ective action given in Refs. [2, 3] shares the same important features

as an e�ective theory for the time-component of gauge �eld A0, which is calculated from

the chromoelectric lattice action.

Another problem closely connected with forementioned is the decon�nement phase

transition, which takes place in compact lattice theory at �nite temperature. As is

known, the chromoelectric part of the compact action is well indicative again, exhibiting

the decon�nement.

Advertising the worthwhile results of our investigations, we would like to mention

a construction of a nonperturbative noncompact limit of the Wison model in the weak

coupling region and evaluation of the corresponding e�ective model. What we obtained

di�ers from the naive noncompact generalization of the Yang-Mills theory because it

includes Z(N) symmetry of WA and an inuence of the invariant measure (as speci�ed
below). We demonstrate that the mechanism of con�nement in the model developed

is essentially the same, as that in the initial compact theory and the new ingredients
of noncompact formulation are playing the crucial role to have con�nement available.
A string tension is evaluated in the model and a generalization to include the chromo-
magnetic part of WA is argued. Certainly, it does not solve the con�nement problem
but permits to have a noncompact formulation on the same footing as compact LGT.

We are going to present these results in two articles. The present paper is organized
as follows. In sect. 2 we remind briey the decisive features of the compact LGT in the
strong coupling limit. Sect. 3 is devoted to discussion of the noncompact lattice models
and their connection, both with the compact ones and with the continuum Yang-Mills
theory. We construct and analyze noncompact model with compact A0 integration in

sect. 4. In sect. 5 we discuss an e�ective way to include an invariant group measure
into noncompact models. We close in sect. 6 with a discussion of compactness problem
of potentials and give simple examples how compacti�cation could lead to the linear
potential between probe charges. On the other hand we claim it is quite enough in some
models with compact variables to perform noncompact Gaussian integration only over

dominating con�gurations to achieve linear potential. The main issue of this discussion

is a demonstration of how noncompact theory can con�ne in the same way that compact
theory does.

2 The essentials of strong coupling compact LGT

Let us consider compact SU(N) and SU(N)=Z(N) gauge theories on the lattice. The

Wilson formulation of LGT has the following form [1]

Z =
Z
D�(U) exp(�

X
p


(@p)); (1)
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where 
 is a character of the fundamental representation of a compact Lie group G,

D�(U) is the invariant integration measure and � = 2Nc

g2
. We would like to recall now

some properties of the Wilson LGT which will be essential here. The majority of exact

analytical results obtained by studying the theory (1) were achieved by strong coupling

expansion. These results in respect to con�ning properties are usually related to the

Wilson criterion of con�nement, expressed by the area law for the Wilson loops, which

are non-trivial on the Z(N) subgroup [1]: If the Wilson loop 
�(@C) = Tr
Q

l2C U�(l)

obeys the area behaviour

< 
�(@C) >� K0 exp(�K1area(C)); (2)

the static colour charges in representation containing Z(N) will be con�ned. It was

proved in [4], that < 
�(@C) > shows the area behaviour in a region of a convergence

of the strong coupling expansion for the SU(N) gauge group. At the same time, the

Wilson loop in the adjoint representation obeys the perimeter law [4]. What are the

mechanisms of the such behaviour? Two possibilities mainly dominate through the

discussions - monopole condensation and vortex condensation.
Here we are sticking to the opinion that the status of the vortex condensation

mechanism is better analytically founded, at least in the strong coupling region thus
preferring the special Z(N) con�gurations contributing to path integral to provide a
con�nement. In [5] a su�cient condition for con�nement by Z(N) vortex condensation

was derived. Z(N) vortices there take a special form of Z(N) singular transformations
performed over a two-dimensional closed surface, and their condensation means that
they must become \fat" in a certain way. A direct calculation up to very high orders in
� � g�2 con�rms the expected behaviour of the condensate in pure SU(2) gluodynamics
according to the mentioned theorem [5, 6]. It was also proven [6], that a coe�cient

at the area law for the vortex free energy exactly equals the string tension. Indeed,
the string tension (coe�cient K1 in (2)) calculated from the vortex condensate is in
accordance with MC data in the region of the strong and the intermediate coupling.
The evaluation of the vortex condensate in the weak coupling region can be found in
[7]. A crucial feature of this mechanism is the breakdown of the SU(N) local gauge

symmetry up to its Z(N) local subgroup [8]. This dynamical Higgs mechanism leads to
the long-interacting forces between colour charges, disordered behaviour of the Wilson

loop and screening of all the gluonic states.

Believing in this strong coupling con�nement picture and taking into account that
there is no phase transition at zero temperature in SU(2) and SU(3) gauge theories,
one may hope that this mechanism would persist in the continuum theory as well, if

Z(N) con�gurations survive the transition to the weak coupling regime. Certainly,

it is not the case at the naive continuum limit and at the continuum limit of per-
turbative expansion. Therefore, the nonperturbative limit must be studied. It has

been demonstrated in [9] that a nonperturbative continuum limit of the SU(N) LGT
contains Z(N)-vortices already in a bare Lagrangian. It is interesting to note that

the monopole con�gurations do not contribute to such not naive continuum limit [9].

These facts are heuristically important though the theory having been exposed in [9]
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is di�erent from the conventional Yang-Mills one (see sect. 6 for more discussion of

this point). Usual objection against this Z(N) con�nement mechanism comes from the

observation that the Wilson loop in the adjoint representation shows presumably the

area law behaviour in the limit Nc !1 (Nc is a number of colours) despite this rep-

resentation does not feel Z(N) variables. This objection has been discussed in [9, 10]

and we refer the interested readers to that discussion. It is worth mentioning that, in

fact, the monopole mechanism of con�nement runs into similar problems as well [11];

we do not know whether there exist any answers to the questions put forth in the pa-

per [11] (this remark concerns only abelian projected monopoles; there exists another

mechanism of con�nement by SU(N)=Z(N) dynamical monopoles, see [12]). Anyway,

we will not specify Z(N) con�gurations in what follows, so that only their presence is

important.

Going to display the phase structure of SU(N)=Z(N) compact LGT, one should

remember that Lagrangian ? includes the adjoint characters 
(@p) [8]. The fundamen-

tal Wilson loop equals zero [8], implying the so-called "supercon�nement" of the static

charges. There is a phase transition at a critical coupling constant presumably of the
�rst order, related to the condensation of the Z(N) monopoles [14] in this theory. The

mixed theory S = �1

adj + �2


fun leads to the picture of two phases existing at zero
temperature: the con�ning phase with the area law behaviour, and the decon�ning one.
Due to the absence of Z(N) con�gurations in the bare Lagrangian of SU(N)=Z(N)
LGT, we cannot determine vortex potentials and consequently, condensates as well, at
least in the same manner. Certainly, they are absent at the level of bare Lagrangian.

A similar situation takes place in the positive plaquette model [15] which eliminates
all thin Z(N) vortices from the standard SU(2) LGT. MC-simulations indicate that
string tension in this model is much less than in the standard SU(2). Since the Lie
algebras of SU(N); SU(N)=Z(N) and positive plaquette model are the same, the naive
continuum limits of these models are the same as well, and equal the Yang-Mills action.

This means that Z(N) con�gurations disappear from SU(N) in this limit.
Let us, therefore, display the role of the Z(N) subgroup in the phase structure of the

compact SU(N) model at a �nite temperature. We would also like to pay an attention
to the chromoelectric part of the model in this example. The partition function at a
�nite temperature

Z =
Z
D�(Un)D�(U0) exp(�

X
p


(@p) + �0
X
p0


(@p0)); (3)

where p0; (p) are time-like (space-like) plaquettes and

�0 = �
2Nc

g2
; � = ��1

2Nc

g2
; � =

a�

at
; (4)

is calculated at the following boundary conditions:

U�(x; t) = U�(x; t+Nt): (5)
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These conditions (5) generate new physical degrees of freedom which can be taken as

the eigenvalues of the Polyakov loop [16]

Wx = P
NtY
t=1

U0(x; t): (6)

The compactness in the temporal direction leads to a Z(N) global symmetry of the

model. This means, multiplication of all links in the time direction in the three di-

mensional x; y; z-torus by a Z(N) element does not change the action, though a single

Polyakov loop transforms as

Wx �! zWx; z 2 Z(N): (7)

Thus, an expectation value of the Polyakov loop can be used as an order parameter

to measure a spontaneous breaking of the Z(N) symmetry. The corresponding phase

transition is well-known as the decon�ning one [17], and in the high-temperature phase

the Z(N) symmetry was spontaneously broken [18] (see, however, [19]).
What is the role of Z(N) con�gurations at a �nite temperature? Let us sketch

now some recognized results obtained from the chromoelectric part of the action (3),
i.e. the term �0

P
p0 
(@p0) (to avoid possible confusion we would like to stress that

we are dealing with the Euclidean formulation of LGT; \chromoelectric part" of the
action means in this case time-like plaquettes). Fixing the temporal gauge @0A0 = 0
and performing the integration over the space gauge �elds Un(x; t) we come to the

partition function of the form in the limit at ! 0

Z =
Z Y

x

D�(Wx)
Y
x;n

X
l

exp(�C2(l))
l(W (x))
�l (W (x+ n)); (8)

where  = g2(2Ta�)
�1, 
l is the character of the l-th irreducible representation of

SU(N) and T = Ntat is the temperature. The partition function (8) has been studied

in numerous articles through di�erent approaches including MC-simulations. There is
a phase transition of the second order for SU(2) and of the �rst order for SU(3) at
some critical value Nt�

�1
0 . The expectation value of the fundamental character behaves

according to

hfN�1SpWxgi =

8><
>:

0; T < TD
c ; confinement phase;

z � f(T ); T > TD
c ; z 2 Z(N); f(T ) � 1;

deconfinement phase:

(9)

Let us limit ourselves to Z(N) subgroup in (8):

Z
D�(W ) !

1

N

X
z2Z(N)

;


l(W ) ! zdl; if 
l ! z
l;


l(W ) ! dl; if 
 is invariant under Z(N); (10)
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where dl is the dimension of l-th representation. The resulting model has the same

qualitative features as the initial one in (8). Both decon�nement phase transition and

con�nement take place. If we consider expansion for Wx around the unit matrix (as

it is made at the naive continuum limit), we will lose this phase structure, because

the system stays in one of the minima of the Z(N)-broken decon�ned phase. Let us

briey summarize. Z(N) con�gurations might play the crucial role in the con�nement

mechanism. It follows, if one wants to construct a noncompact theory which could

display this con�nement mechanism it will be necessary to include these con�gurations

in such a theory. In fact, it is the old problem. There were some attempts to implement

Z(N) con�gurations into the Yang-Mills theory (see, for instance, [9] and references

therein). We would like to use an other method described in the following text.

3 The essentials of noncompact LGT

In order to show the principal di�erence between noncompact gauge theories and com-
pact ones, we shall briey point out some aspects of noncompact Yang-Mills theories on

the lattice. They were introduced �rst in [20] and studied intensively in [21, 22, 23, 24]
(see also references in [24]). The basic element is the gauge potential A� = Aa

�t
a,

where ta are generators of the SU(N) group. The derivatives are represented by the
�nite-di�erence form

@�f !
1

a
[f(x+ �) � f(x)]; (11)

and integrals over the four-dimensional space are changed into sums over all lattice
sites. The path integral is de�ned as the integral over all noncompact gauge �elds
A�(x) calculated in each lattice site. The partition function is, therefore, de�ned by

the relation:
Z =

Z Y
x;�

dA�(x)exp[�a
4
X
x

X
�;�

(F�;�)
2]: (12)

The gauge invariance in these models is explicitly broken. Hence, the gauge �xing
mechanism represented by the Faddeev-Popov ansatz cannot be directly simulated by
the Monte-Carlo process. The method based on simulation of a di�usion equation
was proposed [21]. Gauge �xing is assured by introducing of the local gauge �xing
force to the di�usion equation, tangent to the gauge orbit. Expectation values of

gauge invariant quantities should be independent of such forces. Despite the explicit
breakdown of the gauge invariance, in the limit g2 ! 0 the asymptotic freedom is

presented [20, 21]. One may suggest that the breakdown of the gauge invariance on

the level of the bare Lagrangian is not of crucial importance due to restoration of
the gauge symmetry in the expected region a ! 0 of the quantum theory, since the

terms that caused the breakdown are proportional to the lattice spacing. The main
contribution to the path integral results from a compact region de�ned by a gauge

condition (local gauge force) [21]. No evidence for con�nement was found. The string
tension vanished even at very strong values of the coupling constant. The Wilson loop

obeyed the perimeter law [20, 21, 22]. The expectation value of the Polyakov loop
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always di�ers from zero. Similar behaviour was also observed in the theory with the

gauge A0 = 0 [20]. From the point of view of these facts, noncompact gauge theories

resemble SU(N)=Z(N) compact ones in the weak coupling region, rather than SU(N).

Some attempts to �nd a proper solution were connected to the fact that the explicit

violation of the gauge symmetry is the reason for the absence of the con�ning forces

[23, 24]. However, this opinion does not look to be well motivated. As we pointed out

earlier, in the quantum noncompact theory the asymptotic freedom is observed and

the contribution to the path integral results from the compact region. Thus, there is,

actually, no reason to believe that the gauge invariance is not restored in the quantum

theory after taking the limit a! 0. One more argument comes from the consideration

of the �nite temperature behaviour of the noncompact model (see section 4 of the

present paper). If we believe in a common mechanism of the con�nement in the compact

lattice gauge theory and in the noncompact gauge theory then we should expect similar

behaviour of the Wilson (Polyakov) loops in the noncompact gauge model restricted

to the chromoelectric part as well. If we calculate the partition function (SU(2) gauge

group for simplicity)

Z =
Z Y

x;�

dA�(x; t)exp[�a
4
X
x

(F0;�)
2] (13)

at the periodic boundary conditions A�(x; t) = A�(x; t+Nt) in the temporal gauge, we
shall �nd that hTrW i 6= 0 at any temperature, perhaps with exception of the case of

the in�nite coupling g2 !1 [21]. Thus, the model (13) does not display con�nement
behaviour. Let us emphasize that the �nal result is the gauge invariant as well as the
expression for the partition function after integration out of space gauge �elds An(x)
(see for technical details the next section). This, together with independence of the
MC results of the gauge and the restoration of the asymptotic freedom, refutes the

usual objection concerning a connection between the vanishing of the string tension
and the breakdown of the gauge symmetry in noncompact models.

In fact, some kind of invariant integration over gauge �elds is present in all models
constructed with the goal of avoiding this explicit violation of the gauge invariance
[23, 24]. For instance, the model proposed in [23] is equivalent to the dielectric LGT

introduced in [25]. Let us consider the SU(2) Yang-Mills action with potentials [23]

AY�M
� = Aa

�t
a ! Ad

� = AY�M
� + IT�; (14)

where T� is a new noncompact potential proportional to a unit matrix in colour space.

Rewriting the obtained action on the lattice in the �nite-di�erence form we have as
result the dielectric theory [25] since we can use the representation Ad

� = ��(x)U�(x)

where U�(x) 2 SU(2), 0 � � < 1. We are allowed to choose the potential for the
dielectric �eld � in such a form that [23]: 1) naive continuum limit equals the standard

Yang-Mills action; 2) Wilson loops and corresponding string tension behave like those
in the compact Wilson model; 3) at the weak coupling asymptotic freedom exists.

Thus, the theory is noncompact but con�nement of static charges takes place. Since,

however, the integration measure includes the invariant measure of SU(2) group, it
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can be the reason of the area law. Further, introduce the following restriction for

the noncompact �eld T� in (14): 0 � T� < 1. It follows, that we should consider

SU(N)=Z(N) as the gauge group since U 2 SU(N)=Z(N) in this case. So, as we have

discussed earlier we have to use adjoint SU(2) representation for gauge matrix U . It

means immediately that the fundamental Wilson loop equals zero whereas the adjoint

loop can show critical behaviour.

One more approach starting from a generating functional for noncompact Yang-

Mills theory has been discussed in Ref.[24] where noncompact �elds are exposed to

random compact gauge transformations (instead of the Faddeev-Popov ansatz) at all

lattice sites during every Monte-Carlo sweep. Gauge invariance can be restored in this

approach and linearly rising potential has been observed. In the meantime we cannot

accept as conclusive, the original interpretation of the nature of such behaviour. Indeed,

random compact gauge transformations introduce Z(2) variables into the simulated

theory, creating a reason for the appearing of linear potential. We believe, in order

to comprehend the problem, the supplementary MC-simulations with random gauge

transformations V (2) belonging to: 1) Z(2) and 2) SU(2)=Z(2) are highly desirable.
Then, what we would expect in the �rst case (no explicit gauge symmetry restoration)

is the con�ning behaviour in the strong coupling region and the decon�ning phase
transition in the weak coupling region. In fact, the basis for this is supported by
the resemblance of the resulting theory and the Z(2) gauge theory. The Wilson loop
behaviour in the full range of coupling is less predictable for the second case. Surely,
if we add a summation over Z(2) variables to the noncompact integration, the Wilson

loop will equal zero. We do not expect that the adjoint Wilson loop will obey area law,
at least in the region of weak coupling.

In our opinion, there are two di�erent explanations of such behaviour of noncompact
lattice models:

1) The con�nement mechanism in continuum gauge theory is di�erent from the one

on the lattice (the so-called "light" con�nement mechanism which works only in the
presence of the dynamical quarks [3]) and this mechanism could work in noncompact
lattice models.

2) Noncompact Yang-Mills theory belongs to the other universality class without
quark con�nement.

The third possibility, namely that con�nement is solely the property of compact

gauge theory is not con�rmed by an example of the dielectric gauge theory discussed
above. The following facts indicate that the second choice could be the right one:

i) There is no phase transition, depending on the coupling constant, at zero tem-

perature in pure SU(2) and SU(3) gauge theories; it follows that a nonperturbative
weak coupling limit in a bare constant can de�ne a noncompact model di�erent from

the naive lattice Yang-Mills theory.
ii) The expectation value of the Polyakov loop di�ers from zero in SU(N) gauge

theory if the vacuum is not invariant under Z(N) rotations[2]. The standard Yang-Mills
theory with a at integration measure does not possess Z(N) invariance.

iii) SU(N) compact theory has N global minima whereas noncompact Yang-Mills
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theory has alone minimum. According to [24], such a periodicity could be responsi-

ble for the con�nement but all the minima with the exception of the trivial one are

nonphysical. We do not think that the argument of Ref. [24] is correct in this respect.

We believe, in full accordance with the results [20, 21, 22] discussed above, that

the compact Wilson theory and the noncompact lattice Yang-Mills theory belong to

two di�erent classes of universality: we do not expect the Yang-Mills theory in its

naive lattice form to be able to describe con�nement. Our method of discovering a

proper theory is to construct a noncompact model starting from the compact Wilson

model but not from the continuum Yang-Mills theory taking its naive lattice form (12).

In order that the readers have a guideline to the manuscript we present here a short

description of the main ideas. To secure a con�ning theory in the weak coupling region

we propose to execute the summation over Z(N) variables in the compact formulation

and then to take a noncompact limit expanding the resulting SU(N)=Z(N) matrices

around all minima of the e�ective action obtained. Further, as is known from the

studies of the strong coupling lattice models, invariant group measure (at least, for A0

gauge �eld) can be of great importance for the �nite temperature con�nement (for the
de�nition of the invariant measure, see section 5). The at integration measure for

the A0 �eld fails to respect the Z(N) global symmetry of the vacuum [2]. Thus, the
next step should be to include the invariant measure contribution in the noncompact
e�ective model. Of course, the principal questions appearing here are the expansion of
SU(N)=Z(N) gauge matrices in the points of the minima, and what form can be used
for the invariant measure.

4 Noncompact model with compact A0 integration

As the �rst step, we are going to explore the SU(2) noncompact model de�ned by
Eq.(13). We would like to reexamine the continuum limit of the chromoelectric part
of the lattice action in order to include Z(2) invariance and compact A0 integration

in the �nite-di�erence gauge theory. We begin by rewriting the chromoelectric part of
the action (3) using the following gauge transformations of space gauge matrices Un(x)
[26]

Un(x; t) �! (Vx)
tUn(x; t)(Vx+n)

�t;

U+
n (x; t) �! (Vx+n)

tU+
n (x; t)(Vx)

�t; n = 1; :::; d

(15)

where V is the U0 gauge matrix in the static gauge. Next, the chromoelectric part

becomes

�0
X
p0


(@p0)! �S(E) =
2an

atg2

X
x;n(

Nt�2X
t=0

Sp[I � Un(x; t)U
+
n (x; t+ 1)] + Sp[I � Un(x;Nt � 1)WxU

+
n (x; 0)W

�

x+n]

)
: (16)

10



Computing the continuum limit of �S(E) we consider that at the limit at ! 0 we have

Wx ! exp(i� g A0(x)) in the given gauge. Assuming the smoothness of the A0 �eld

in the sense that

WxW
�

x+n � exp(�i�gan@n A0(x)) � I � i�gan@n A0(x) + ::: (17)

by help of the de�nition
�t;0
at

! �(t) one obtains

�Scon(E) =
Z
d3x

Z �

0
dtf(@tAn)

2 + �(t)Sp[L1 + L2=at]g; (18)

where

L1 = An(@tAn) + �(@nA0) (@tAn)� AnW (x)(@tAn)W
�(x); (19)

L2 = A2
n +

1

2
�2 (@nA0)

2 � AnW (x)AnW
�(x): (20)

The �rst term in Eq.(18) corresponds to the gauge A0 = 0. However, this gauge is in-

compatible with periodic boundary conditions. A0 can be set equal to zero everywhere
except at one singular point [27]. The second term in Eq.(18) reects this fact. Using
the decomposition

W (x) � I + i�gA0(x) + :::;

we can easily demonstrate that the function at the �-symbol in Eq.(18) corresponds
to the remaining terms in (F0;n)

2. Due to the preceding discussion we do not use the

last decomposition. We are going to study the partition function �Scon(E) in the �nite
di�erence formalism. Because the gauge �xing in Eq.(18) is equivalent to the static
one (i.e. @0A0 = 0), the results, calculated in both gauges, are the same. We have
in Eq.(18) the singular term L2=at. Hence, a regularization procedure is necessary to
de�ne it properly. Applying the �nite di�erence approximation in Eq.(18) we discover

through algebra the relation to the partition function

Z =
Z Y

x

d�(Wx)
Y
x;n

Z1;2(W ) Z3(W ) exp(�S(1)); (21)

where

S(1) =
2an

at
�2

X
x

(@nA0(x))
2; @nA0(x) = A0(x+ n)�A0(x): (22)

Zi is the path integral over space gauge �elds:

Z1;2 = (Det M bc
tt0)

�1=2 =Z Nt�1Y
t=0

dA1
n(t) dA

2
n(t) expf�A

b
n(t) M

bc
tt0 A

c
n(t

0) g; (23)

where b; c = 1; 2 are the colour indices and

Z3 =
Z Nt�1Y

t=0

dA3
n(t) expf�A

3
n(t)

~Mtt0 A
3
n(t

0)
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+
2a2n
at

�(@nA0(x))
Nt�1X
t=0

(�t;Nt�1 � �t;0) A
3
n(t) g =

(Det ~Mtt0)
�1=2 exp

"
2a4n
a2t

�2(@nA0(x))
2[( ~M0;0)

�1 � ( ~M0;Nt�1)
�1]

#
: (24)

We use the representation:

M bc
tt0 =

a3n
at

0
BBBBBBBBB@

2I �I � � � 0 mcb

�I 2I � � � 0 0

0 0 � � � 0 0
...

...
...

...
...

0 0 � � � 2I �I

mbc 0 � � � �I 2I

1
CCCCCCCCCA

and
~M = M bc

tt0(m
bc = mcb = I):

mbc is the matrix 2
 2 constructed from the scalar Sp W (x) and the octet Sp�3W (x)
parts of the Polyakov loop. Through parametrization

W (x) = exp(
i'(x)�3

2
); '(x) = �gA0(x); (25)

one �nds

mcb =

 
cos'(x) � sin'(x)

sin'(x) cos'(x)

!
: (26)

Introducing the notation

Seff(A0(x)) = S(1) �
2a4n
a2t

�2
X
x;n

(@nA0(x))
2
h
( ~M0;0)

�1 � ( ~M0;Nt�1)
�1
i
; (27)

we can represent the partition function in the form

Z = [(Det ~Mtt0)
�1=2]N

3
�

Z
e�Seff (A0(x))

Y
x;n

(Det M cb
tt0)

�1=2
Y
x

d�(Wx): (28)

It follows from (24 - 28) that the third color component of the gauge �eld does not
interact with the �rst and the second components (because of chosen gauge). However,

only the third component leads to the second term in (27). Since ~Mtt0 does not depend

on W (x) this contribution renormalizes a free theory S(1). At Nt ! 1 we have
precisely

Seff = �
X
x;n

(@nA0(x))
2; � = const

an

at
�2: (29)

The determinant can be calculated to produce

DetM cb
tt0 = (

2a3n
at

)Nt sin4
'(x)

2
: (30)

12



Since d�(Wx) = sin2 '(x)

2
d'(x) we �nally obtain the partition function to be of the

form (up to an irrelevant constant)

Z �

Z
e�Seff (A0(x))

Y
x

2
4sin2 '(x)

2
d'(x)

(sin2 '(x)

2
)d

3
5 ; (31)

where d is the space dimension. It is clear from (31) that the singular contribution to

(18) is well-controlled in the present regularization (since there are no time derivatives

at the singular term and all singular terms are proportional to a�1t ). Obviously, the

constructed theory will be equivalent to (3) (restricted to the chromoelectric part)

when the matrices Un are expanded around unit matrices and U0 are being kept in

their lattice form (it is also the proof that these calculations do not depend on chosen

gauge). To verify this we note that all equations (21-24) are valid in this case and

matrix M cb
tt0 becomes

M cb
tt0 !M

cb

tt0 =

0
BBBBBBBBB@

2I �mbc � � � 0 mcb

�mbc 2I � � � 0 0
0 0 � � � 0 0
...

...
...

...
...

0 0 � � � 2I �mbc

mbc 0 � � � �mbc 2I

1
CCCCCCCCCA
:

Since DetM cb
tt0 = DetM

cb

tt0 we obtain the same result (31).
Let us now discuss this example comparing (31) with (8). In parametrization (25)

the character expansion in (8) can be expressed as

Y
x;n


l(Wx)
l(Wx+n) =
Y
x

(sin2
'x

2
)�d

Y
x;n

sin
'x

2
(2l + 1) sin

'x+n

2
(2l + 1): (32)

We conclude from this that (8) and (31) are di�erent theories. If we integrate over
d�(Wx) in (8) we will �nd that only closed loops contribute to the partition function
whereas there is no such property in (31). However, just this property is the cause of

linear potential at a low temperature. Further, using the Poisson summation formula

applied to calculate the sum over characters in (32) we can easily show that at a high
temperature (lattice spacing a is �xed)

Y
x;n

X
l

exp(�C2(l))
l(Wx)
l(Wx+n) �!T!1 exp(�Seff + Sloc +O(a)) (33)

with Seff to be of the form as in (29) [17, 28], Sloc is a local function of A0, and the
measure in (31) should be treated as smooth function. The correlation function of
the Polyakov loops has a form corresponding to a screening potential between probe

quarks in this region. Hence, the model presented in (31) is capable of describing only

the high temperature decon�ned phase. It follows immediately from this consideration

that the pure Yang-Mills theory (13) does not describe the con�nement phase since we
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have taken into account a larger number of gauge con�gurations (we did not expand

the Polyakov loops around unit matrix) generated by compact �elds on time-like pla-

quettes. We are convinced from this example that (3) and (12) can belong to di�erent

universality classes. We could obtain slightly more information if we did not presup-

pose the smoothness of A0 �eld in the sense (17). The smoothness of A0 means that

neighboring \spins" Wx and Wx+n are oriented approximately in one direction, while

in the con�nement phase the con�gurations being essential for con�nement should be

strongly disordered (for example, Wx � I, Wx+n � �I). In this case the expansion

(17) will be obviously invalid. If we had constructed the continuum limit in the time

direction only, we would obtain the e�ective action of the form

Seff = 
X
x;n

cos('x � 'x+n): (34)

This action coincides with the e�ective action for the U(1) lattice compact theory

appearing in the Hamiltonian formulation at a �nite temperature. There is a phase

transition from the low temperature con�ning phase to the decon�ning one in this
theory. However, this method of calculation is not mathematically well-founded for
the SU(2) gauge group. If Wx � I and Wx+n is far from this con�guration, then the

expansion of Un(x; t) around the unit matrix will not lead to the true minima of the
action. Two possible avenues to promote our calculations are available in principle. The
�rst one consists of applying some conjectures proposed in [2] and, then, in transition
from theory (31) to some e�ective model which should be calculated in the framework
of the renormalization group scheme. There exists a concern that not all the important

con�gurations have been taken into account. The last example (34) demonstrates that
space gauge �eld con�gurations Z 2 Un(x) could be essential for obtaining the true
minima of the quantum theory. In the next section we analyze the �rst of these
possibilities.

5 JLP - model and simulation of the invariant mea-

sure contribution

The next model we would like to examine was proposed in [2] (see also [3]) (in what

follows we will call the model: the JLP-model). The question is, how could one simu-
late the contribution of the invariant group measure in a noncompact (either lattice or

continuum) theory. A at integration measure fails to respect the Z(N) global symme-
try of the lattice action. In this case the expectation value of the Polyakov loop di�ers

from zero. Usually, the de�nition of the invariant measure on SU(N) group includes a

compact region of integration and weight function in the corresponding integrand. In

this section speaking about invariant measure we mean only this weight function which

is local contribution to the action of LGT. The basic idea of the JLP-model consists in
the assumption that one should simulate this contribution making use of a local Z(N)

invariant potential for A0 gauge �eld. Then, a symmetry argument suggests that the

14



action of the con�ning SU(2) noncompact model involves a non-polynomial periodic

term depending on the A0 gauge �eld:

SY:�M: !
1

g2

Z
Sp(F��)

2d4x�
1

a4

Z
d4x ln(sin2A0(x; t)ag); (35)

where, following [2], we did not �x the static gauge but chose the diagonal form for A0.

The basic assumption is that the cuto� (lattice spacing in our case) of the theory is

renormalizable and is left �nite in the continuum. If this is the case, the renormalized

Lagrangian is of the sine-Gordon form. Thus, we have for the action

Seff = SY:�M: + �
1X

m=1

�m cosmTgA0 = SY:�M: + V (A0); (36)

where �m is an arbitrary coe�cient in the model. The potential V (A0) is a sum over the

characters of the SU(2) gauge group which are trivial on Z(2). The new constant � can

be interpreted as the so-called hidden coupling constant [29] and should be calculated
in the course of the renormalization procedure. If one now takes another assumption,
namely that the dynamics of the space gauge �elds is not essential for the con�nement,

we will get the following e�ective theory

Seff =
Z
d4x(

1

g2
Sp(@�A0(x))

2 � V (A0)): (37)

It has been claimed in [2] that the Wilson loop obeys the area law and this leads to the
linear potential between probe quarks. The string tension appears to be proportional
to �. The model possesses global Z(2) symmetry which, however, appeared to be
broken at any values of the coupling constants � and � [30]. This seems to be in

contradiction with the main idea of [2], since the invariant measure was introduced to
preserve the Z(2) symmetry of the vacuum. In ref.[30] it has been rigorously shown
that the correlation functions of the kind < sinA0(0)=2 sinA0(R)=2 > behave like those
in the free scalar model. This leads to the nonzero string tension � = �=� if we choose
the appropriate sign in � (the e�ective action (37) should have a maximum at A0 = 0).

We studied a simpli�ed version of the model (37) with �m = �m;1. This approach

is su�cient for our arguments since the string tension in [2] is non-zero at this level.
Thus, we start from the partition function

Z =
Z
1

�1

Y
x

duxe
�S(u); (38)

where the action is of the sine-Gordon type

S(u) = �
X
x;x0

uxMx;x0ux0 � �
X
x

cos ux (39)

with

uMu = du2x �
X
n

uxux+n; (40)
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and d is the space dimension. We are going to calculate the following correlation

function

�(R) =< eiu(�R=2)=2e�iu(R=2)=2 >; (41)

which can be interpreted as a correlation function of two Polyakov loops in the static

diagonal gauge (after we �nished all calculations without gauge �xing, we found that all

results were essentially the same). Introducing external sources �x =
1
2
(�x;�R=2��x;R=2)

into the partition function (38), we de�ne �(R) as

�(R) = Z�=Z; (42)

where

Z� =
Z
1

�1

Y
x

duxe
�S(u)+i

P
x
�xux : (43)

The corresponding potential between probe quarks is then

V (R) = � ln �(R) � V0; (44)

where V0 is the self energy of two static charges. We want to investigate two asymptotic
regions on the plane (�; �): 1) �� 1; �� 1 and 2) �� 1. Let us begin with the �rst

asymptotic. Integrating the ux �eld, one obtains for Z� up to an irrelevant constant

Z� = (det�M)�1=2
X
lx

Y
x

Ilx(�) exp[�
1

�

X
x;x0

(lx + �x)M
�1
x;x0(lx0 + �x0)]: (45)

Here, Il is the modi�ed Bessel function. Taking its asymptotic behaviour at �� 1 we

can make use of the Poisson summation formula to calculate the sum over lx in (45).
After this procedure one arrives at the equation for the potential, to be of the form in
the limit N !1, where N is the number of lattice sites

V (R) = q(R) +
1

�

Z
d3k sin2

k�R�

2
(
1

Mk

�
1

Mk +
2�
�

)� V0; (46)

where we have denoted

q(R) =
1

�

X
x;x0

�xM
�1
x;x0�x0 (47)

and

Mk = d�
dX

�=1

cos k�: (48)

Calculating the right-hand side of eq.(46) we �nd the potential of the general form for

R!1

V (R) �
a

R
�
be�mR

R
(49)

with m = 2�
�
and a, b are R-independent constants.
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Considering asymptotic � � 1 (just this case corresponds to the regime of [2]), it

is convenient to rewrite Z� in an equivalent form as

Z� = e�q(R)
Z
1

�1

Y
x

dux exp[��
X
x;x0

uxMx;x0ux0 � �
X
x

cos(ux + iQx)]; (50)

where Qx = 2
�

P
x0 M

�1
x;x0�x0. In the �rst order in � we �nd the potential V (R) to be

(taking into account contribution of V0):

V (R) = �
1

2
M�1

R=2;�R=2 + �
X
x

Wx(R): (51)

We introduced here

Wx(R) = 4e�
1

�
M�1

x;0 sinh
M�1

x;�R=2

2�
sinh

M�1
x;R=2

2�
cosh

M�1
x;R=2 �M�1

x;�R=2

2�
: (52)

If we consider asymptotic �� 1 we can approximately represent

Wx(R) �
M�1

x;�R=2M
�1
x;R=2

�2
: (53)

Eq.(52) with asymptotic behaviour (53) corresponds, in our lattice notations, one-

to-one to the result of [2] where the con�ning potential has emerged from the termP
xWx(R). We performed both analytical and numerical evaluations of the sum (51)

in the approach

Wx(R) � e�
1

�
M�1

x;0

2
4M�1

x;�R=2M
�1
x;R=2

�2

3
5 : (54)

Actually this sum is divergent, but it is decreasing as a function of R for any �nite
number of lattice sites. We did the computations for various values of � � 1 and
for N = 203; 303; 403. Certainly, if we took at this stage the continuum limit in (53)

and followed the procedure of [2] we would get the linear potential. But we do not
think that this procedure is well founded. We considered the limit N =1 and intro-
duced a di�erent regularization to compute V (R).

P
xWx(R) can be represented in

the approach (53) as

Wx(R) � lim�!0(�
@

@�

X
k�

eik�R�

d+ ��
Pd

�=1 cos k�
): (55)

The potential can be found after subtraction of the R-independent divergences from

the last equation. Indeed, increasing with R potential appears to have a negative sign.
To achieve a con�ning potential we have to choose � < 0. In [2] � enters the e�ective

action just with this sign. We were not able to prove that this result is independent
of the regularization scheme for evaluations of these divergent sums. Besides, there is

an additional term e�
1

�
M�1

x;0 in Wx(R) which was missed in [2]. This term improves the
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convergence of the whole sum but the renormalization procedure becomes even more

complicated.

A more reliable way to calculate (50), in our opinion, is to use the saddle point

method. This method leads, in the asymptotic under consideration, to the potential

which has the form (49) (we omitted all calculations since they are quite transparent).

This result is in agreement with rigorous results of [30]. If the correlation function

< sinA0(0)=2 sinA0(R)=2 > is exponentially decreasing and Z(2) global symmetry is

broken then the correlation function < cosA0(0)=2 cosA0(R)=2 > is close to unity.

Consequently, the correlation function (41) is close to unity as well, which implies a

noncon�ning potential.

We would like to summarize the main consequences and to provide some comments

on the reliability of this approach to the con�nement in noncompact models. Taking

suitable correlation functions (see theorem 4 in [30]), the nonzero string tension can

be found even in the continuum limit after proper renormalization procedure. If we

may interpret these correlation functions as those of the Polyakov loops in the e�ective

model, then we have con�nement of static charges. Nevertheless, Z(2) global symme-
try is broken at all couplings. This type of con�nement resembles that of the U(1)

Villain lattice model investigated in [30]. The sine-Gordon model is there an e�ec-
tive model of the lattice abelian theory with Villain action. Thus, the �rst question
is whether this mechanism can reproduce the speci�c features of con�nement of the
SU(2) Wilson model. In this model Z(2) global symmetry is unbroken at zero and at
low temperatures. A broken Z(2) implies a screening potential between probe quarks,

and, thus a decon�nement phase. Thereby, we have to use (41) as correlations of the
Polyakov loops in this model since, in any other case, it is unclear how to deal with
the decon�nement transition if we have the linear potential in the Z(2) broken phase.
In our opinion, to reproduce the speci�c features of the SU(2) Wilson theory we have
to preserve not only the global center symmetry, but also the local center symme-

try. In principle, the global symmetry can be spontaneously broken as it happens in
the standard sine-Gordon model, whereas there should be no such breakdown at zero
temperature SU(N) models. To achieve the above stated goal, it is not su�cient to
introduce the invariant measure into e�ective action. We present a modi�cation of the
JLP model which respects local Z(N) symmetry in [13].

The second question concerns the assumption that the dynamics of space gauge

potentials is not essential for the con�nement. This may not be the case, and we have
discussed in the previous chapter that Z(2) con�gurations contained in the compact

lattice �eld Un(x) can be of great importance. Let us consider the compact formulation

at zero temperature. If we set Un(x) = I everywhere, we get as a result an XY model
for the U0(x) gauge �eld with an integration over the compact SU(2) measure. There

is a phase transition in this model implying decon�nement of static quarks. However,
no phase transition should take place in SU(2) at zero temperature. Hence, we are

not allowed to neglect dynamics of space gauge potential, at least in this naive form.
Further, it is obvious from (31) that the noncompact integration over space potentials

can signi�cantly change the e�ective integration measure for the A0 gauge �eld because
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the determinant (30) generates a local contribution to the measure. Moreover, we

can see from (28), (30) that the noncompact integration over space gauge potentials

generates just the invariant measure. On the other hand, the contribution of the sine-

Gordon type can appear not only from the invariant measure but also from the e�ective

action (33). The calculation of Sloc in (33) shows that this term is proportional to the

cos agA0 up to the corrections O(a). The situation becomes even more complicated

when we consider the chromomagnetic part of the action. The invariant measure can

be cancelled completely in this case as has been shown in [31] (in fact, there is currently

no common opinion on the cancellation of the invariant measure - see for discussion

[32]). Hopefully there should be no such cancellation at zero temperature. Here, the

invariant measure can be included into the e�ective action together with a compact

measure for Z(N) space gauge con�gurations.

6 Compactness and noncompactness in con�nement:

discussion of simple models

In this section we discuss the problem of compactness and its importance regarding
con�nement. In the broad class of lattice models, the compactness of the potentials
entering the original action, is an essential condition for con�nement. On the other
hand, the compactness itself does not lead to the linear potential. Indeed, the com-
pacti�cation performed following the scheme

Z
1

�1

d�f(�) =
Z 2�

0
d�F (�); F (�) =

1X
j=�1

f(2�j + �)

can change nothing in the correlation functions, so we adduce the following example
when the transition to the compact theory provides con�nement. We start from the
theory of a scalar noncompact �eld in continuum with the action

S = J0
1

2

Z
d4x

X
n

(@n�(x))
2 + J1

Z
d4x cos�(x); (56)

where n = 1; :::; d and represent it on the lattice as

Slat = J l
0

1

2

X
x;n

(�n�(x))
2 + J l

1

X
x

cos �(x); (57)

where J l
0 and J

l
1 is connected with J0 and J1. The compacti�ed version of (57) has the

form (up to an irrelevant constant and up to a2 in lattice spacing a)

Slat
compt =

X
x;n

(J� cos
�x+n � �x

2
+ J+ cos

�x+n + �x

2
): (58)

This expression coincides with the e�ective three-dimensional action for SU(2) gluody-

namics at a �nite temperature in the strong coupling limit provided that J� � J+ � 0
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(see, for instance, [33]). One can �nd linear potential in this model at small J� (d = 3)

and decon�nement transition to a phase with screening potential when J� is increasing.

What lesson may we extract from this? The model (58) is a version of the well-known

three-dimensional XY model which displays a phase transition from strong to weak

coupling behaviour. At the small value of J� (low temperature strong coupling region

of �nite temperature SU(2) theory or high temperature region of the spin system) cor-

relation functions fall exponentially and system is in the disordered phase. Regarding

SU(2) language, it means the area law for the Wilson loops. This behaviour is due

to the vortex loops which percolate through the lattice [34] (or become fat because of

condensation, in other terminology). In the weak coupling phase only short noninter-

acting vortex loops are allowed, thus the behaviour of the system is mainly de�ned

by the contribution of the spin waves. Neglecting entirely the vortex contribution in

this region, we come to the free theory of the scalar �eld on the lattice. The theo-

ries (56),(57) are in the same universality class while the theory (58) belongs to an

other class, although it originates from (56) and has only this naive continuum limit.

Thereby, the question is whether it is possible that the theory (58) could de�ne a new
continuum theory with a disordered phase caused by vortex condensation? In other

words, can we construct a continuum limit of the model (58) at the small value of J�
(strong coupling region)? We investigate this problem in the next paper [13].

Our next example is related to the fact that a form of the e�ective variables in the
action can also be essential for con�nement. To illustrate this suggestion by way of a
solvable model we need to restrict ourselves to models which can be e�ectively reduced

(for dominating con�gurations) to the Gaussian integrals after changing variables �x !
u(�x) = ux and expanding the action around the main minimum. Thus, we consider
the action

Seff = �
�

2

X
x;x0

uxMx�x0ux0 +
X
x

V (ux) + i
X
x

�x�x(ux); (59)

supposing that the potential V (ux) includes the contributions both of the invariant
measure and of the Jacobian of the substitution �x ! ux. The integration in the

partition function is performed with the measure
Q

x dux over the entire noncompact
region. When ux = �x we have a model which is close to the JLP model if V represents
the periodic potential. Let us suppose that a proper e�ective variable is ux = ei�x.
Then we immediately obtain

e�F (R) =< u0u
�

R >�
e�mR

R
; (60)

where

m =
1

N

X
x

(
�

2
Mx +

V 00(0)

2
) (61)

is the string tension in this model. Formally, the principal point in this calculation
was the transition from �(R) =< �0�R > to �(R) =< u0u

�

R > when ux = ei�x . Let us
imagine that the original variables �x were compact variables. Then, this rather trivial

example demonstrates that in some models with compact variables it is su�cient to
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perform only noncompact Gaussian integration over the dominating con�gurations to

achieve the linear potential.

Our next example concerns the noncompact model presented in [9, 10]. This model

is of the same spirit like [5], where a su�cient condition for the con�nement was derived

(see our discussion in the section 2). It has been proven that if probability distribution

of the vortices in the compact model obeys the area law it will lead to the disorder-

ing behaviour of the Wilson loop and, consequently, to the con�ning potential. This

statement can be generalized for the noncompact model calculated in [9] (see [35]).

Unfortunately, both the theory [9] and this generalization of the Z(N) vortex con�ne-

ment mechanism to the noncompact models [35] appear very formal. As we pointed

out in section 2, the theory of [9] is noncompact and not a naive limit of the Wilson

model. It includes, in addition to Yang-Mills potentials, singular Z(N) transformations

performed over two-dimensional closed surfaces. The corresponding path integral con-

tains a summation over all possible two dimensional surfaces and determinants in the

external singular �elds. It is unclear at the moment whether it is possible to execute

all these summations and to calculate the corresponding determinants (it is the main
reason for not adducing any calculations here with discussed theory). As such, we

think this model demonstrates that Z(N) variables can be included in the noncompact
limit of the compact theory.

The last example concerns a mathematical origin of con�nement in the Wilson
theory and how its origin can be reproduced in noncompact models [36]. We start from
the �nite temperature partition function for SU(N) gluodynamics, obtained within the

approach of time-like plaquettes, as

Z =
Z Y

x

D�x
Y
x;n

X
l

Kl()
l(x)

�

l (x+ n): (62)

Here, D�x is the invariant integratiom measure and 
l(x) is the character of the l-
th irreducible representation. Performing the invariant integration in the partition
function we can easily check that closed loops only contribute to the partition function.

For the correlation function < 
f (0)

�

f (R) > (f marks fundamental representation)
we �nd out that the �rst nontrivial term, surviving the invariant integration in the
region Kl() ! 0 (low temperature), is the shortest path between points 0 and R on
the lattice:

< 
f (0)

�

f (R) >� (Kf ())
R +O(K()): (63)

Could this picture be reproduced for noncompact �elds? The positive answer becomes

straightforward supposing that we have the following partition function for the non-
compact �eld ux

Z =
Z
1

�1

Y
x

[duxe
V (ux)]e

~S(u) (64)

and e
~S(u) can be expanded as

e
~S(u) =

Y
x;n

X
l

Cl()Ll(ux)Ll(ux+n); (65)
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where functions Ll form the complete orthonormal basis in the space of quadratically

integrable functions with the weight eV (ux)

Z
1

�1

dueV (u)Ll(u)Lk(u) = �l;k: (66)

Mathematically it indicates the same property as above: closed loops only contribute

to the partition function (64). Calculating the correlation function < Lk(0)Lk(R) >

we �nd the linear potential in a similar manner as in the model with compact invariant

integration:

< Lk(0)Lk(R) >� (Ck())
R +O(C()); (67)

if the following equation is ful�lled

Z
1

�1

dueV (u)Ll(u) = 0: (68)

Two points should be stressed here. The weight eV (u) plays a role of the invariant
measure of the compact model. It enters the action S = V (u)+ ~S as the local potential.

The role of the Z(N) symmetry is to pick up those functions Lk within the complete
basis fLg which satisfy eq.(68). It is clear from the procedure above that this method
could be directly applied to the full Wilson action with plaquette interaction. We
should take a product of the Ll functions in this case along the perimeter of the
minimal plaquette with the same weight, and to sum over l in (65) obeying (68).

Finally, the last question has to be answered: whether the partition function (64)

may correspond to any quantum �eld theory with acceptable properties besides con-
�ning ones? In the paper [13] we try to synthesize all the essential results of this
paper into a general picture and present an investigation of the SU(2) compact Wilson
model in the region of weak coupling. We shall demonstrate that models of such types
(64) can be de�ned as a noncompact limit of the Wilson theory in the weak coupling

region if we execute summation over Z(N) variables. We shall calculate an e�ective
noncompact model and prove its con�ning behaviour.
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