60 research outputs found

    Evidence for Archean hydrous deep-mantle reservoir provided by Abitibi komatiites

    Get PDF
    Archean komatiites result from melting under extreme conditions of the Earth’s mantle. Their chemical compositions evoke very high eruption temperatures, up to 1600°C, providing clues to still higher temperatures in their mantle source [1]. This message is clouded, however, by uncertainty about the water content in komatiite magmas. One school holds that komatiites were essentially dry and originated in mantle plumes [2] while the other argues that these magmas contained several percent of water, which drastically reduced their eruption temperature and links them to subduction processes [3]

    Belingwe komatiites (2.7 Ga) originate from a plume with moderate water content, as inferred from inclusions in olivine

    Get PDF
    Major and trace elements, and volatile components have been measured in melt inclusions in olivine from fresh 2.7 Ga old komatiites from the Reliance Formation of the Belingwe Greenstone Belt, Zimbabwe. Reconstructed compositions of melt inclusions contain 20–23.5 wt% MgO and up to 0.3 wt% H2O; these compositions probably represent those of the erupted lava. In inclusions in relatively evolved (low Fo) olivines, an excess of Na2O, CaO, Li, La, Cu, Rb, Y, Sc as well as volatile components (H2O, F, Cl and S) relative to other highly incompatible elements is attributed to assimilation of seawater altered mafic material. No assimilation signature is observed for the most primitive melt inclusions hosted in the magnesium rich olivines. The primary melt composition, estimated using melt inclusions in the most magnesian olivine (Fo 93.5), contains up to 27.5 wt% MgO and ca. 0.2 wt% H2O. The presence of H2O slightly depressed the liquidus temperature to ca. 1513 °C. Our results suggest formation of the Belingwe komatiite magma at ca. 7 GPa pressure and ca. 1790 °C temperature in a mantle plume. The plume picked up water and probably chlorine through interaction with a hydrous transition mantle zone in the way similar to that previously proposed by Sobolev et al. (2016) for komatiites in Canada

    Paleoarchean mantle hydrous reservoir beneath South Africa?

    Get PDF
    Recent study of melt inclusions in high magnesian olivines (Fo 92.4-Fo 94.2) from the 2.7 Ga komatiites of the Abitibi Greenstone Belt, Canada [Sobolev et al, Nature, 2016] demonstrates an early contamination of melts by seawater brines indicated by elevated concentrations of Cl. Yet the melt inclusions in the most magnesian olivines (Fo 94-94.5) that have not been affected by the seawater contain up to 0.8 wt.% H2O suggesting presence of hydrous reservoir in the deep mantle at Neoarchean time. The present contribution may extend the age of this reservoir by 800 million years..

    Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago

    Get PDF
    Water strongly influences the physical properties of the mantle and enhances its ability to melt or convect. Its presence can also be used to trace recycling of surface reservoirs down to the deep mantle1, which makes knowledge of the water content in the Earth's interior and its evolution crucial for understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from a high degree of mantle melting at high pressures2 and thus are excellent probes of the chemical composition and water contents of the deep mantle. An excess of water over elements that show similar geochemical behaviour during mantle melting (for example, cerium) was recently found in melt inclusions in the most magnesium-rich olivine in 2.7-billion-year-old komatiites from Canada3 and Zimbabwe4. These data were taken as evidence for a deep hydrated mantle reservoir, probably the transition zone, in the Neoarchaean era (2.8 to 2.5 billion years ago). Here we confirm the mantle source of this water by measuring deuterium-to-hydrogen ratios in these melt inclusions and present similar data for 3.3-billion-year-old komatiites from the Barberton greenstone belt. From the hydrogen isotope ratios, we show that the mantle sources of these melts contained excess water, which implies that a deep hydrous mantle reservoir has been present in the Earth's interior since at least the Palaeoarchaean era (3.6 to 3.2 billion years ago). The reconstructed initial hydrogen isotope composition of komatiites is more depleted in deuterium than surface reservoirs or typical mantle but resembles that of oceanic crust that was initially altered by seawater and then dehydrated during subduction. Together with an excess of chlorine and depletion of lead in the mantle sources of komatiites, these results indicate that seawater-altered lithosphere recycling into the deep mantle, arguably by subduction, started before 3.3 billion years ago

    New Olivine Reference Material for In Situ Microanalysis

    Get PDF
    A new olivine reference material – MongOL Sh11‐2 – for in situ analysis has been prepared from a central portion of a large (20 cm × 20 cm × 10 cm) mantle peridotite xenolith from a ~ 0.5 Ma old basaltic breccia at Shavaryn‐Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5 to 2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA‐ICP‐MS, SIMS and bulk analytical methods (ID ICP‐MS for Mg and Fe, XRF, ICP‐MS) for major, minor and trace elements at six institutions worldwide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si) and minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1–2). The presence of some mineral and fluid‐melt micro‐inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty‐seven major, minor and trace elements
    • 

    corecore