21 research outputs found

    Water Mass Transport Changes through the Venice Lagoon Inlets from Projected Sea-Level Changes under a Climate Warming Scenario

    Get PDF
    In this study, an ensemble of numerical simulations with a state-of-the-art hydrodynamic model for coastal applications is used to characterize, for the first time, the expected mid-21st-century changes in circulation and associated sea-level height inside the Venice lagoon induced by projected Mediterranean sea level rise and atmospheric circulation changes over the Adriatic Sea under the RCP8.5 emission scenario. Our results show that water transports through the three inlets connecting the Venice lagoon to the open sea are expected to change significantly, with consequent significant persistent alterations of the circulation and sea-level height inside the lagoon. The projected water mass redistributions motivate further studies on the implications of climate change for the lagoon environment

    Plume spreading test case for coastal ocean models

    Get PDF
    We present a test case of river plume spreading to evaluate numerical methods used in coastal ocean modeling. It includes an estuary–shelf system whose dynamics combine nonlinear flow regimes with sharp frontal boundaries and linear regimes with cross-shore geostrophic balance. This system is highly sensitive to physical or numerical dissipation and mixing. The main characteristics of the plume dynamics are predicted analytically but are difficult to reproduce numerically because of numerical mixing present in the models. Our test case reveals the level of numerical mixing as well as the ability of models to reproduce nonlinear processes and frontal zone dynamics. We document numerical solutions for the Thetis and FESOM-C models on an unstructured triangular mesh, as well as ones for the GETM and FESOM-C models on a quadrilateral mesh. We propose an analysis of simulated plume spreading which may be useful in more general studies of plume dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of model discretization or computational grid than it does on the type of advection scheme.</p

    FESOM-C v.2: coastal dynamics on hybrid unstructured meshes

    Get PDF
    We describe FESOM-C, the coastal branch of the Finite-volumE Sea ice – Ocean Model (FESOM2), which shares with FESOM2 many numerical aspects, in particular its finite-volume cell-vertex discretization. Its dynamical core differs in the implementation of time stepping, the use of a terrain-following vertical coordinate, and the formulation for hybrid meshes composed of triangles and quads. The first two distinctions were critical for coding FESOM-C as an independent branch. The hybrid mesh capability improves numerical efficiency, since quadrilateral cells have fewer edges than triangular cells. They do not suffer from spurious inertial modes of the triangular cell-vertex discretization and need less dissipation. The hybrid mesh capability allows one to use quasi-quadrilateral unstructured meshes, with triangular cells included only to join quadrilateral patches of different resolution or instead of strongly deformed quadrilateral cells. The description of the model numerical part is complemented by test cases illustrating the model performance.</p

    Modified carbon-containing electrodes in stripping voltammetry of metals

    Full text link

    Revising contemporary heat flux estimates for the Lena River, Northern Eurasia

    No full text
    The Lena River (Lena R.) heat flux affects the Laptev Sea hydrology. Published long-term estimates range from 14.0 to 15.7 EJ·a−1, based on data from Kyusyur, at the river outlet. A novel daily stream temperature (Tw) dataset was used to evaluate contemporary Lena R. heat flux, which is 16.4 ± 2.7 EJ·a−1 (2002–2011), confirming upward trends in both Tw and water runoff. Our field data from Kyusyur, however, reveal a significant negative bias, −0.8 °C in our observations, in observed Tw values from Kyusyur compared to the cross-section average Tw. Minor Lena R. tributaries discharge colder water during July–September, forming a cold jet affecting Kyusyur Tw data. Major Tw negative peaks mostly coincide with flood peaks on the Yeremeyka River, one of these tributaries. This negative bias was accounted for in our reassessment. Revised contemporary Lena R. heat flux is 17.6 ± 2.8 EJ·a−1 (2002–2011) and is constrained from above at 26.9 EJ·a−1 using data from Zhigansk, approximately 500 km upstream Kyusyur. Heat flux is controlled by stream temperature in June, during the freshet period, while from late July to mid-September, water runoff is a dominant factor

    The Lena Delta region of the Laptev Sea - a unique confluence for the study of changing Arctic dynamics

    Get PDF
    The shelf zone of the Laptev Sea and the Lena Delta in particular, has shown pronounced changes over the last 100 years. Despite growing interest into the region, the still insufficient amount of observational data as well as the lack of modeling efforts with fine resolution over the shelf leaves many challenging questions. Certain observational evidence has, however, already accumulated, leading to valuable insights about dynamics in the current region. We collected the data about temperature and salinity profiles, dissolved oxygen and pH for the Lena Delta region of the Laptev Sea for different years. Additionally, the newly organized expedition to the Lena Delta allowed collecting the particulate carbon content and chemical composition in the main Lena freshwater channels. Based on these data, the dominant environmental factors driving the biological system were established. Given the large territory, the direct measurement data have to be supplemented by a hydrodynamical and bio-optical analysis via remote sensing and modeling. The goal of our modeling approach is to simulate the shelf circulation dynamics under the action of varying atmospheric forcing, Lena runoff and tidal forcing, and their impact on ecosystem dynamics
    corecore