6,927 research outputs found

    Cosmology without inflation

    Full text link
    We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.Comment: 8 pages, no figur

    GRB 081029: Understanding Multiple Afterglow Components

    Full text link
    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB~081029, which occurred at a redshift of z = 3.8479$. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data also cover a wide energy range, from 10 keV to 0.77 eV (1.24 Angstrom to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a single-component jet interacting with an external medium. We do, however, find that the observed light curve can be explained using multi-component model for the jet.Comment: 4 pages, 3 figures, to appear in the AIP Conference Proceedings for the Gamma-Ray Burst 2010 Conference, Annapolis, MD, USA, November 201

    Condensation in ideal Fermi gases

    Full text link
    I investigate the possibility of condensation in ideal Fermi systems of general single particle density of states. For this I calculate the probability wN0w_{N_0} of having exactly N0N_0 particles in the condensate and analyze its maxima. The existence of such maxima at macroscopic values of N0N_0 indicates a condensate. An interesting situation occurs for example in 1D systems, where wN0w_{N_0} may have two maxima. One is at N0=0N_0=0 and another one may exist at finite N0N_0 (for temperatures bellow a certain condensation temperature). This suggests the existence of a first order phase transition. % The calculation of wN0w_{N_0} allows for the exploration of ensemble equivalence of Fermi systems from a new perspective.Comment: 8 pages with 1 figure. Will appear in J. Phys. A: Math. Gen. Changes (minor): I updated Ref. [9] and its citation in the text. I introduced citation for figure 1 in the tex

    Troubles with quantum anistropic cosmological models: Loss of unitarity

    Full text link
    The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. A Schr\"odinger-type equation is obtained where the matter variables play the role of time. However, the signature of the kinetic term is hyperbolic. This Schr\"odinger-like equation is solved and a wave packet is constructed. The norm of the resulting wave function comes out to be time dependent, indicating the loss of unitarity in this model. The loss of unitarity is due to the fact that the effective Hamiltonian is hermitian but not self-adjoint. The expectation value and the bohmian trajectories are evaluated leading to different cosmological scenarios, what is a consequence of the absence of a unitary quantum structure. The consistency of this quantum model is discussed as well as the generality of the absence of unitarity in anisotropic quantum models.Comment: Latex file, 18 pages. To appear in General Relativity and Gravitatio

    Confinement in the Deconfined Phase: A numerical study with a cluster algorithm

    Get PDF
    We have previously found analytically a very unusual and unexpected form of confinement in SU(3) Yang-Mills theory. This confinement occurs in the deconfined phase of the theory. The free energy of a single static test quark diverges, even though it is contained in deconfined bulk phase and there is no QCD string present. This phenomenon occurs in cylindrical volumes with a certain choice of spatial boundary conditions. We examine numerically an effective model for the Yang-Mills theory and, using a cluster algorithm, we observe this unusual confinement. We also find a new way to determine the interface tension of domain walls separating distinct bulk phases.Comment: LaTex, 14 pages, 4 figure

    Investigation of Weibull Statistics in Fracture Analysis of Cast Aluminum

    Get PDF
    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. Introduction The ability to design static structures and rotating machine components that can survive anticipated loads and stresses in both normal and overload applications is an important safety and economic requirement. Common design practice for many industrial applications tends toward placing large safety factors in the design of structures and machinery. Although this practice results in satisfactory operation, usually the machine element is larger, weighs more, and utilizes materials less efficiently. An alternative is to design structural elements to operate at loads closer to their failure strength and then proof test the end product to ensure the safety of those items that will reach the consumer. However, this method can also be costly, perhaps more so than designing with a conservative safety factor. In aerospace applications, designing in a conservative mode with large safety factors is precluded because the resultant structure would be either too heavy or too bulky to fly. Hence, designing closer to the failure limit is almost mandatory in aerospace applications. The issue becomes one of how to determine the failure limit of a structure or machine element. A further issue confronting the engineer is the determination of the stress in a structure below which no fatigue, creep, or fracture failures will occur. For pressure vessels elaborate sets of standards have been developed that ensure with reasonable engineering certainty that for known materials no failure will occur over the usable design life (ASME, 1987). However, for new or untested materials for which no field experience exists, how should this determination be made? What kind of tests should be conducted? How many specimens should be run? How can results from coupon specimens be extrapolated to full-size structures? How can the probability of survival of a structure subjected to known loads be determined with reasonable engineering certainty? Many investigators over the years have approached these questions in the areas of fracture and fatigu

    Quantum Cosmology in Scalar-Tensor Theories With Non Minimal Coupling

    Get PDF
    Quantization in the minisuperspace of non minimal scalar-tensor theories leads to a partial differential equation which is non separable. Through a conformal transformation we can recast the Wheeler-DeWitt equation in an integrable form, which corresponds to the minimal coupling case, whose general solution is known. Performing the inverse conformal transformation in the solution so found, we can construct the corresponding one in the original frame. This procedure can also be employed with the bohmian trajectories. In this way, we can study the classical limit of some solutions of this quantum model. While the classical limit of these solutions occurs for small scale factors in the Einstein's frame, it happens for small values of the scalar field non minimally coupled to gravity in the Jordan's frame, which includes large scale factors.Comment: latex, 18 page

    Transferring orbital and spin angular momenta of light to atoms

    Full text link
    Light beams carrying orbital angular momentum, such as Laguerre-Gaussian beams, give rise to the violation of the standard dipolar selection rules during the interaction with matter yielding, in general, an exchange of angular momentum larger than hbar per absorbed photon. By means of ab initio 3D numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the orbital angular momentum, and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom

    The Value of Literacy Practices

    Get PDF
    The concepts of literacy events and practices have received considerable attention in educational research and policy. In comparison, the question of value, that is, ‘which literacy practices do people most value?’ has been neglected. With the current trend of cross-cultural adult literacy assessment, it is increasingly important to recognise locally valued literacy practices. In this paper we argue that measuring preferences and weighting of literacy practices provides an empirical and democratic basis for decisions in literacy assessment and curriculum development and could inform rapid educational adaptation to changes in the literacy environment. The paper examines the methodological basis for investigating literacy values and its potential to inform cross-cultural literacy assessments. The argument is illustrated with primary data from Mozambique. The correlation between individual values and respondents’ socio-economic and demographic characteristics is explored

    Signatures of resonance superfluidity in a quantum Fermi gas

    Get PDF
    In this letter, we predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.Comment: 4 pages, 4 figure
    • …
    corecore