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Investigation of Weibull Statistics 
in Fracture Analysis of Cast 
Aluminum 
The fracture strengths of two large batches of A357-T6 cast aluminum coupon 
specimens were compared by using two-parameter Weibull analysis. The minimum 
number of these specimens necessary to find the fracture strength of the material 
was determined. The applicability of three-parameter Weibull analysis was also in­
vestigated. A design methodology based on the combination of elementary stress 
analysis and Weibull statistical analysis is advanced and applied to the design of a 
spherical pressure vessel shell. The results from this design methodology are com­
pared with results from the applicable A SME pressure vessel code. 

Introduction 
The ability to design static structures and rotating machine 

components that can survive anticipated loads and stresses in 
both normal and overload applications is an important safety 
and economic requirement. Common design practice for 
many industrial applications tends toward placing large safety 
factors in the design of structures and machinery. Although 
this practice results in satisfactory operation, usually the 
machine element is larger, weighs more, and utilizes materials 
less efficiently. An alternative is to design structural elements 
to operate at loads closer to their failure strength and then 
proof test the end product to ensure the safety of those items 
that will reach the consumer. However, this method can also 
be costly, perhaps more so than designing with a conservative 
safety factor. 

In aerospace applications, designing in a conservative mode 
with large safety factors is precluded because the resultant 
structure would be either too heavy or too bulky to fly. Hence, 
designing closer to the failure limit is almost mandatory in 
aerospace applications. The issue becomes one of how to 
determine the failure limit of a structure or machine element. 

A further issue confronting the engineer is the determina­
tion of the stress in a structure below which no fatigue, creep, 
or fracture failures will occur. For pressure vessels elaborate 
sets of standards have been developed that ensure with 
reasonable engineering certainty that for known materials no 
failure will occur over the usable design life (ASME, 1987). 
However, for new or untested materials for which no field ex­
perience exists, how should this determination be made? What 
kind of tests should be conducted? How many specimens 
should be run? How can results from coupon specimens be ex­
trapolated to full-size structures? How can the probability of 
survival of a structure subjected to known loads be determined 
with reasonable engineering certainty? 

Many investigators over the years have approached these 
questions in the areas of fracture and fatigue [Weibull, (1939), 
Heller, (1972), Little and Ekvall (1979), Abelkis and Hudson 

(1980), Augusti, et al. (1984), Ioannides and Harris (1985), 
and Zaretsky (1987)]. Primary consideration has been given to 
the determination of low failure probabilities. That is, the 
probability that a structure will fail will be less than 1 percent. 
This means that there is greater than 99 percent probability 
that the structure will survive. However, because of the 
volume effect recognized by Weibull (1939), the probability of 
survival for a large structure will be less than that for a smaller 
structure with the same operating stress. 

In view of the aforementioned, it was the objective of the 
work reported herein (7) to analyze large sample sizes by using 
two-parameter Weibull analysis to determine the comparative 
fracture strength of two batches of the same material, (2) to 
determine by using Weibull statistics the minimal sample size 
necessary to determine the fracture strength of a material, (3) 
to determine by combining design and statistical methods the 
relative weight and survivability of a pressure vessel, and (4) to 
investigate the applicability of three-parameter Weibull 
analysis to fracture analysis. 

Statistical Method 

The Weibull distribution function linearizes most engineer­
ing data distributions, making it possible to estimate a popula­
tion of infinite size from small amounts of data (Weibull, 
1939, 1951). The Weibull distribution function can be ex­
pressed as 

F(x) = 1 - exp bm (i) 

Contributed by the Stress and Reliability Committee for publication in the 
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where for this investigation the parameters are 
F(x) = statistical fraction of specimens that failed at 

given stress or lower 
x = stress 

xu = stress below which no specimens failed (location 
parameter) 

x0 = characteristic strength, stress at which 63.2 per­
cent of specimens failed 

m = Weibull slope or modulus 
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The three Weibull parameters xu,x0, and m are assumed to be 
constants of the material. When xu is assumed to be zero, the 
three-parameter Weibull distribution function becomes 
known as a two-parameter Weibull distribution function. The 
Weibull slope or modulus m is a measure of material 
homogeneity. A high value of m indicates a high degree of 
homogeneity. 

Equation (1) can be rearranged to form an equation for a 
straight line as follows: 

In In [ T 3 W ] = , B I 1 ^ - * - > - lnx. (2) 

In this form a plot of the distribution function should be linear 
in a coordinate system where the ordinate is In 
ln{ 1/[1 -F(x)]) and the abscissa is \n{x—xu). 

After the method of Johnson (1959) is used to obtain values 
of F(x), the data set is arranged in order of increasing stress. 
Each stress value then has an order number according to its 
position in the list. Then from applicable statistical tables of 
median ranks, each number is converted to a median rank, 
which is the value of F(x) for that particular data. 

Values of Fix) and x—xu can be plotted on Weibull 
probability paper as \n \n{\/\\-F(x)]} or In \n{\/[S(x)]}, 
where S is the probability of survival (equal to 1 - F(x)) as a 
function of the log strength. The plot will be linear for the cor­
rect value of xu, which is also called the location parameter. 

If the original plot of the data is a straight line, then xu is 
assumed to be zero (i.e., the minimum stress below which no 
specimens can fail is zero). If the original plot concaves 
downward, then there is some finite stress below which no 
specimens fail. The true value of xu can be found by 
substituting assumed values into the expression x—xu until the 
Weibull plot becomes linear. 

Results and Discussion 

Two separate batches of A357-T6 cast aluminum were frac­
ture tested by the U.S. Air Force in accordance with ASTM 
standards (ASTM, 1986). These data were shown in the two-
parameter Weibull plots of Fig. 1. There were 354 coupon 
specimens fracture tested of batch 1 and 388 of batch 2. These 
data were subjected to both two-parameter and three-
parameter Weibull-analyses. The results of these analyses were 
applied to the design of a hypothetical pressure vessel shell to 
determine the order of merit for weight and survivability. 

Comparative Fracture Strength. A material's fracture 
strength is usually defined as the mean or average stress at 
which specimen failure occurs. The mean fracture strengths 
for batches 1 and 2 (given in Table 1) were 357 and 361 MPa 
(51,783 and 52,362 psi), respectively. The difference between 
these values is insignificant, only 1.1 percent. 

Since high reliability is usually desired, more concern is 
generally given to the prediction of fracture strengths at low 
probabilities of failure rather than at the mean. Figure 2 shows 
the estimated failure distributions of batches 1 and 2 ex­
trapolated to show probabilities of failure to the 
0.0001-percent level. The x axis was scaled linearly to better 
show the differences in the prediction of fracture strength be­
tween the two batches than could be realized from a Weibull 
plot. The differences in the estimate of fracture strength in­
creased between batch 1 and batch 2 with decreasing 
probability of failure. At a probability of failure of 0.0001 
percent (99.9999 percent probability of survival), the 
estimated fracture strengths were 270.1 MPa (39,178 psi) for 
batch 1 and 234.1 MPa (33,948 psi) for batch 2. This dif­
ference is 14.3 percent. 

Comparison of Weibull Parameters. The two-parameter 
Weibull plots of batches 1 and 2 shown in Fig. 1 exhibit very 
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Fig. 1 Two-parameter Weibull plots of fracture strength of A357-T6 
cast aluminum 

Table 1 Results of two-parameter Weibull analyses of fracture data 
from two batches of A357-T6 cast aluminum specimens 

8atch 

l 
2 

Sample 
size 

354 
388 

Difference, 

Upibull 
modulus, 

m 

47.5 
30.6 

ercent 

Fracture strength 

Characteristic, x0 

MPa 

361.3 
357.6 

psi 

52 396 
53 311 

1.7 

Mean 

MPa 

357.0 
361.0 

psi 

51 783 
52 362 

1.1 

0.0001-Percent 
level1 

MPa 

270.1 
234.1 

psi 

39 178 
33 948 

14.3 

aFracture strength at a 99.9999 percent probability of survival. 

high Weibull slopes, thereby indicating a high degree of 
material homogeneity. Table 1 shows the results of this 
analysis. The Weibull slopes or moduli for batches 1 and 2 are 
47.5 and 30.6, respectively. The fact that these slopes differ by 
43.3 percent is at first deceiving. It is important to realize that 
the Weibull modulus, or Weibull slope, is defined as the 
tangent of the angle (in degrees) of the curve. As an angle ap­
proaches 90 deg., the tangent of the angle rapidly approaches 
infinity. Since the Weibull plots for batches 1 and 2 are nearly 
vertical (almost 90 deg.), a slight difference between the 
respective angles results in a large difference in the tangents, 
and hence the Weibull slopes. For example, a Weibull 
modulus of 47.5 represents an angle of 88.8 deg., and a 
modulus of 30.6 represents an angle of 88.1 deg. The dif­
ference in angle is less than 1 deg. Hence, there is actually no 
significant difference between the slopes of batches 1 and 2. 

The characteristic strengths of the two batches were found 
to vary by only 1.73 percent, being 361.3 MPa (52,396 psi) for 
batch 1 and 357.6 MPa (53,311 psi) for batch 2. These dif-
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ferences are also insignificant. For the two batches of cast 
aluminum considered here, the Weibull parameters were 
found to be nearly the same, as commonly assumed. 

Determination of Minimal Sample Size. Large sample 
sizes are generally desirable in statistical analysis because of 
the consistency and accuracy in the results obtained. The 
disadvantage of such a practice is, obviously, the increase in 
cost. An important issue confronting the engineer then is the 
minimal sample size needed to determine a material's fracture 
strength. 

The stresses at which specimen failure occurred within the 
batch were ranked in increasing order. Random numbers were 
then generated by a computer programmed to generate 
numbers only within the range of the number of specimens 
contained in the batch. For example, since there were 354 
specimens in batch 1, random numbers were generated within 
the range 1 to 354. The stresses ranked in the batch correspon­
ding to the numbers generated randomly were selected to form 
data subsets consisting of 10, 20, and 30 samples. Hence, these 
samples represented collections of data that could have been 
obtained from fracture experiments had only so many coupon 
specimens been used. 

Weibull plots of the computer-generated samples for batch 
2 are shown in Fig. 3. For easy comparison, these samples, 
along with their parent distributions, are shown plotted on a 
semilogarithmic graph in Fig. 4. A summary of the results is 
given in Table 2. As can be seen for batch 1, using only 30 
samples yielded nearly the same estimated failure distribution 
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as that of the parent (354 samples). There was also no signifi­
cant difference in using 10 samples. The overall failure 
distribution derived from 20 samples deviated the most from 
the parent distribution. 

For batch 2 all the computer-generated samples gave dif­
ferent failure distributions than the parent distribution (388 
samples). The failure distribution derived from 20 samples 
was the closest to that of the parent, being only slightly better 
than 30 samples. Ten samples deviated the most from the 
parent distribution. However, the characteristic strength and 
the mean strength obtained from using 10 samples were not 
significantly different from those of the parent values. 

The effect of varying the sample size on the Weibull 
parameters and the fracture strengths both at the mean and 
the estimation at the 0.0001 percent failure probability level is 
also shown in Table 2. The variation of fracture strength from 
the parent distribution was less than 15.5 percent for sample 
sizes of 20 or more, or approximately the same as the variation 
from batch 1 and batch 2. This would suggest that for an 
estimate of high probabilities of survival, a minimum sample 
size of 20 be used. 

Generally, the Weibull slope or modulus obtained from us­
ing only 10 samples was the least accurate among all the 
computer-generated samples in comparison with the slope of 
the parent distribution. However, a variation in modulus from 
30.6 to 94.5 means a change in angle of only 1.2 deg. 
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Fig. 2 Estimated failure distributions of batches 1 and 2: material, 
A357-T6 cast aluminum 

(a) 10 SPECIMENS (b) 20 SPECIMENS Cc) 30 SPECIMENS 
Fig. 3 Two-parameter Weibull plots of randomly selected data from 
batch 2 with 95-percent confidence limits 

Table 2 Effect of varying sample size on Weibull parameters and estimated fracture strengths of A357-T6 
cast aluminum specimens 

Batch 

1 

2 

Sample 
size 

354 
30 
20 
10 

388 
30 
20 
10 

Weibull 
modulus, 

m 

47.5 
47.5 
35.7 
59.0 

30.6 
46.9 
41.9 
94.5 

Characteri 

MPa 

361.3 
358.9 
361.5 
357.6 

367.6 
362.6 
367.7 
367.0 

psi 

52 396 
52 054 
52 433 
51 869 

53 311 
52 584 
53 321 
53 229 

tic, x0 

Difference, 
percent 

0.6 
.1 

1.0 

1.4 
0 
.2 

racture 

MPa 

357.0 
354.7 
356.0 
354.2 

361.0 
358.3 
362.8 
364.8 

strength 

Mean 

psi 

51 783 
51 444 
51 626 
51 377 

52 362 
51 961 
52 618 
52 910 

Difference, 
percent 

0.6 
.3 
.8 

0.8 
.5 
1.0 

0.0001-Percent level 

MPa 

270.1 
268.3 
245.4 
282.9 

234.1 
270.1 
264.4 
317.1 

psi 

39 178 
38 912 
35 594 
41 034 

33 948 
39 169 
38 352 
45 990 

Difference, 
percent 

0.7 
9.1 
4.7 

15.4 
13.0 
35.5 
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Effect of varying sample size on estimate of fracture strength of Fig. 4 

A357-T6 cast aluminum 

DeSalvo (1970) studied the effect of sample size on 
estimating the Weibull slope m from computer-generated 
samples of parent distributions. For the range of m values (3 
to 30) and sample sizes (10 to 100) studied, the coefficient of 
variation for the estimate of m was found to be about (1/n)0-5. 
According to this result, a variation in m of 31.6 percent could 
then be expected from a sample size of 10. 

Effect of Sample Size on Confidence Limits. The fewer • 
the samples used in estimating the failure distribution, the less 
confidence can be had in the failure predictions from these 
distributions. Johnson (1959) discusses the mathematics of 
determining the confidence limits of the failure distribution. 
Using his method the effect of varying sample size on con­
fidence limits was studied. 

Six separate groups of samples, having sample sizes of 88, 
35, 17, 8, and 7, were formed from batch 1. The subgroup 
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Fig. 5 Effect of sample size on 95 percent confidence limits of A357-T6 
cast aluminum: sample sizes, 7, 8,11,17, 35, and 88 

consisting of 88 samples was formed by extracting every 
fourth data point from the ordered data of batch 1. Similarly, 
the 35, 17, 11, 8, and 7 sample sizes were formed by taking 
every 10th, 20th, 30th, 40th, and 50th data point, respectively. 
Forming data subsets in this manner was necessary in order to 
keep the estimated failure distributions approximately the 
same for each sample group, since confidence limits are also 
affected by the Weibull slope. 

Computer-generated plots showing the Weibull lines ob­
tained from the subgroups in addition to their respective 95 
percent confidence bands are shown in Fig. 5. The 95 percent 
confidence bands indicate that in 95 percent of all possible 
cases the true population will fall within the enclosing bands. 
As can be seen, the fewer the number of samples used, the 
wider is the confidence band surrounding the distribution. 
This indicates that less confidence can be had in population 
estimates obtained from smaller sample sizes, the degree of 
which can be seen in Fig. 5. 

Determination of Minimum Failure Stress. A two-
parameter Weibull distribution was used in Fig. 1 to 
characterize the strength probability for cast aluminum. That 
is, the location parameter xu is zero. This implies that the 
minimum stress below which no specimens fail is zero. This 
idea is a theoretical convenience. However, experience sug­
gests that there may be nonzero values of stress below which 
specimens will always survive fast fracture. The assumption of 
a zero minimum strength is perhaps too conservative for many 
applications where cost, weight, or both are critical. This idea 
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Fig. 6 Three-parameter Weibull plot of batch 2: material, A357-T6 cast 
aluminum; x„ = 2 6 2 MPa (38 ksi); 388 specimens tested 
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was also recognized by Shih (1980), who suggested that a 
three-parameter Weibull distribution be used to model the 
failure distribution of brittle materials. 

The two-parameter Weibull plots of cast aluminum fracture 
data shown in Fig. 1 conform very well to a straight line. For 
such a situation can a nonzero value of xu be obtained? A 
methodology to meet this objective was explored. 

The fracture strength of the weakest specimen in the batch 
was used as the initial estimate of x„. The quantity x—xu was 
then obtained for each point by subtracting this estimate of xu 
from the fracture strength of each specimen. These new values 
were plotted on Weibull paper with the same failure 
probabilities as before. This is an established method for fin­
ding xu as given by Moyer et al. (1962). 

Smaller estimates of the location parameter xu were found 
to result in greater linearity of the plotted data. Following this 
trial and error methodology, a location parameter of 268.9 
MPa (39,000 psi) was assumed for batch 1 and 262.0 MPa 
(38,000 psi) for batch 2. 

Figure 6 shows the failure distribution of batch 2 resulting 
from three-parameter Weibull analysis. The results of using 
two- and three-parameter Weibull statistics are compared in 
Fig. 7. For both batches the estimated probabilities of failure 
between the two and three-parameter models became increas-

35 40 45 50 

FRACTURE STRENGTH, ksi 

55 

(b) BATCH 2 , 388 SPECIMENS TESTED 
Fig. 7 Two- and three-parameter Weibull analyses of A357-T6 cast 
aluminum 

ingly different as the fracture probability decreased. Assuming 
that there is indeed a nonzero minimum strength below which 
no specimens will fail, these results indicate that there are ex­
ceptions to the established rule for determining the location 
parameter, since any nonzero value substituted for xu did not 
result in greater linearity of the data. Otherwise, it must be 
assumed that there is a probability of failure at any stress. 

Extrapolation of Test Specimen Data to Full-Size Struc­
tures. Three methods are typically used for establishing the 
relationship between a structure's strength and its reliability. 
These methods include testing full-scale models, small-scale 
models, or small specimens. 

Testing full-scale models is the simplest approach because it 
provides a direct relationship between reliability and strength 
for the full-size structure. This method, however, is neither 
practical nor cost effective. 
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For tests on small-scale models and small specimens a 
theory is needed to determine the effect of size on the fracture 
strength of the structure. The weakest link theory (WLT) fills 
this need. This theory is based on the idea that physical bodies, 
envisioned as divided into small volumes, can be modeled as a 
chain, with the strength of the chain determined by its weakest 
link. This is a conservative theory, since it assumes that failure 
at any point is failure of the entire structure. In other words, it 
is assumed that nothing prevents a crack from propagating 
throughout the material. The probability of survival S o f a 
chain consisting of n identical links is then 

S = S] (3) 

where S,- is the probability of survival of each link. 
For two structures of identical material with similar 

geometries (and stress conditions), the probability of survival 
of the smaller structure of stressed volume K, can be scaled to 
that of the larger structure of stressed volume V2 by 

s1 = s\v2'y0 (4) 

This relationship can be used to scale coupon specimens to 
full-size structures by a method proposed by Zaretsky (1987). 
For brittle components possessing nonuniform stress distribu­
tions and multiaxial stress states, a methodology for determin­
ing the structure's reliability was proposed by Barnett et al. 
(1966). 

For situations where the stress distribution can be assumed 
to be uniform, the following design methodology is proposed: 

(7) Perform a Weibull analysis on tensile test specimens 
with gage volume Vu obtaining Weibull parameters m, x0, 
and xu. 

(2) Relate the operating stress x to a structural parameter 
such as the wall thickness of a pressure vessel. 

(3) Assume a value for the parameter or parameters to be 
determined and calculate the resulting operating stress. 

(4) Calculate the stressed volume V2 of the proposed 
structure. 

(5) Determine the structure's reliability S2 by direct scal­
ing: 

*-h-[(^)"]) (5) 

Note that for brittle materials such as ceramics under multiax­
ial stress, it is necessary to use a multiaxial stress theory to 
determine the effect of this stress state on the fracture 
probability. Combine this theory with equation (5) and 
calculate the probability of survival. 

(6) Repeat steps 3 to 5 until a satisfactory reliability is 
obtained. 

As a demonstration, this methodology was applied to the 
design of a hypothetical spherical pressure vessel shell, using 
the A357-T6 cast aluminum data analyzed in this report. The 
density of this material is 2.68 g/cm3 (0.097 lb/in.3). The in­
side radius R of the shell and the internal pressure P were 
given as 0.305 m (12 in.) and 1.72 MPa (250 psi), respectively. 
The shell thickness t was determined from a required reliabili­
ty of 99.999998 percent. 

The equation relating the stress x in the wall to the thickness 
was derived from elementary stress analysis (Gere and 
Timoshenko, 1984) and is given by 

x = -
PR (6) 

Assuming a value for t, the stress in the wall was calculated 
from equation (6), and the stressed volume V2 of the shell was 
determined from 
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Fig. 8 Effect of shell thickness on probability of survival of A357-T6 
cast aluminum: shell inside diameter, 0.305 m (12 in.); internal pressure, 
1.72 MPa (250 psi) 
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Fig. 9 Effect of shell weight on probability of survival of A357-T6 cast 
aluminum: shell inside diameter, 0.305 m (12 in.); internal pressure; 1.72 
MPa (250 psi); material density, 2.68 g/cm3 (0.097 lb/in.3) 

V2=—[(R + ty-R3} (7) 

The probability of survival of the shell was then calculated by 
substituting the values of x and V2 into equation (5) along with 
the Weibull parameters obtained from Weibull analysis of the 
cast aluminum specimens with gage volume Vx. Sample 
calculations performed in Appendix A show each step in the 
design algorithm. Appendix B gives the derivation of a single 
design equation for spherical pressure vessel shells. 

Figure 8 shows the effect of shell thickness on the struc­
ture's probability of survival. Within a very small range the 
probability of survival was highly sensitive to changes in the 
shell thickness. For shell thicknesses between 0.80 and 0.93 
mm (0.032 and 0.036 in.), the probability of survival increased 
from 0.0008 to 98.66 percent for batch 1. The probability of 
survival for a shell designed by using the data of batch 2 was 
similarly observed to go from 0.0005 to 98.5 percent for an in­
crease in wall thickness of only 0.211 mm (0.0083 in.). 
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Table 3 Spherical pressure vessel shell parameters resulting 
from ASME and Weibull design methods 

[ I n s i d e radius of s h e l l , 0.305 m (12 i n . ) ; i n t e r n a l 
pressure, 1 .72 MPa (250 p s i ) . ] 

Design 
procedure 

ASME 
Weibull 

Shell thickness 

mm 

3.39 
.141 

in. 

0.133 
.055 

Height 

kg 

10.8 
4.4 

lb 

23.8 
9.8 

Probability 
of survival,a 

percent 

100^000000 
99.999998 

^According to Weibul l s t a t i s t i c s . 

The relationship between the weight of the sperical shell and 
the probability of survival is shown in Fig. 9. The probability 
of survival increased from nearly 0 to over 99 percent with the 
addition of less than 0.70 kg (1.5 lb) to the total weight of the 
structure. 

Comparison with ASME Pressure Vessel Code. With prob­
abilistic design methods structural parameters are often deter­
mined by the required reliability. Conventional design 
methods usually involve safety factors that are used to ensure 
that the operating stress will never exceed the strength of the 
material. The size of the structure is then determined by the 
safety factor used. Safety factors are typically used in design 
codes prescribed by the American Society of Mechanical 
Engineers (ASME). 

A comparison was made between the results of designing 
the spherical shell described previously by using Weibull 
statistics and designing it by using the applicable ASME code 
(ASME, 1987). The required shell thickness according to this 
code is given by 

PR 
*~ 2SE-Q.2P (8 ) 

where S is the maximum allowable stress and is defined as the 
ultimate tensile strength divided by a safety factor of 4. From 
military standard specifications the ultimate tensile strength of 
A357-T6 cast aluminum is 310.3 MPa (45,000 psi) (Depart­
ment of Defense, 1987). For this comparison the value of the 
joint efficiency E was taken as unity since joints are not ac­
counted for in the Weibull design methodology. 

Table 3 shows the thickness and weight of the pressure 
vessel shell resulting from the application of both design 
methods. The minimum shell thickness from the ASME code 
was 3.39 mm (0.133 in.) and the weight was 10.8 kg (23.8 lb). 
But for a reliability of 99.999998 percent, the shell designed 
from Weibull statistics had a thickness of only 0.141 mm 
(0.055 in.) and a weight of 4.4 kg (9.8 lb). According to 
Weibull's theory the shell designed by the ASME code has vir­
tually no chance of fracture failure (assuming there are no ma­
jor flaws). However, the weight of the shell can be cut in half 
and still have an extremely high probability of survival. A cor­
relation between probability of survival and safety factor for a 
spherical pressure vessel shell is shown in Fig. 10. At a safety 
factor of 1.25 the probability of survival was 100 percent. 

Summary of Results 

Two separate batches of cast aluminum were fracture tested 
in accordance with ASTM standards by the U.S. Air Force. 
There were 354 coupon specimens fracture tested in batch 1 
and 388 in batch 2. These data were subjected to both two-
parameter and three-parameter Weibull analyses. The results 
were applied to the design of a hypothetical pressure vessel 
shell to determine the order of merit for weight and sur­
vivability. The following results were obtained: 

(1) The mean fracture strengths for batches 1 and 2 of 
A357-T6 cast aluminum were 357.0 and 361.0 MPa (51,781 
and 52,362 psi), respectively. The difference between these 
values is insignificant, only 1.1 percent. However, at a 99.9999 
percent probability of survival (0.0001 percent probability of 
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Fig. 10 Correlation between probability of survival and safety factor for 
spherical pressure vessel shell: fracture strength of A357-T6 cast 
aluminum, 310 MPa (45 ksi) (handbook value) 

failure), the estimated fracture strength varied by 14.3 
percent. 

(2) The mean fracture strengths determined by using 10, 
20, 30, and up to 388 test specimens were not significantly dif­
ferent. At a 99.9999 percent probability of survival the varia­
tion of fracture strength was less than 15.5 percent for sample 
sizes of 20 or more, or approximately the same as the variation 
from batch to batch. This suggests a minimum sample size of 
20 to determine an estimate of the probability of survival for 
material such as cast aluminum. 

{3) According to the established rule for determining the 
location parameter on the basis of the linearity of the original 
two-parameter Weibull plot of the data, the stress below 
which no specimens fail must be assumed to be zero for 
A357-T6 cast aluminum. 

(4) The ASME pressure vessel code for the design of 
spherical pressure vessel shells was found to be much more 
conservative than the probabilistic design methodolgy 
presented. 
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A P P E N D I X A 

Sample Calculations 

Theoretical Stress in Thin-Walled Spherical Pressure Vessel 

PR 
x = - It 

(Al) 

where 

x - stress 
P = internal pressure 
R = inside radius 
t = wall thickness 

Using P=1.72 MPa (250 psi), i? = 0.305 m (12 in.), and 
f = 1.02 mm (0.040 in.) gives 

(1.72xl06)(0.305) 
x = - - = 257.2 MPa (37.3 ksi) 

(2)(0.00102) 
Note that a general rule for a thin-walled pressure vessel is that 
the ratio of radius R to wall thickness t should be greater than 
10. 

Stressed Volume of Spherical Shell 

V=—-[(R + t)3-R3] 

where 5 t is the probability of survival of the test specimen. 
For the value of F(x) given above, Sx is then 

S, = 1-0.000000126 = 0.999999874 

Probability of Survival (Full-Size Structure) 

S2 = S : V ^ (A5) 

where S2 and V2 are the probability of survival and stressed 
volume of the full-size structure, respectively, and Vx is the 
stressed volume of the test specimen. For V2 = 0.000381 m3 

(23.2 in.3), K, =0.805 x 10"6 m3 (0.0491 in.3) and the value of 
5) as given above gives 

S, = 0.999999874(O0OO381/00805x 10^6» = 0.999940 

ASME Code for Spherical Pressure Vessel Shell 

RP 
t = - (A6) 

2SE-0.2P 

where the parameters are as follows: 

P = internal pressure 
R = inner radius 
S = maximum allowable stress, S = Sul/n 

Sul = ultimate tensile strength 
n = safety factor 
E = joint efficiency 

For P=1 .7 MPa (250 psi), # = 0.305 m (12 in.), S„, = 310.3 
MPa (45 ksi), n = 4, and £ = 1 the thickness becomes 

(1.72xl06)(0.305) 
t = 

2(310.3 xlO6) 
(A2) (1)-0.2(1.72 xlO6) 

where Vis the stressed volume. Using the previous values of R 
and t gives 

-^-[(12 + 0.040)3-123] V = 

[(0.305+ 0.00102)3-0.3053] 

= 3 8 1 x l 0 - 6 m 3 (23.2 in.3) 

Probability of Failure (Test Specimen) 

FU) = 1 - « P [ - ( ^ - ) " ] (A3) 

where 

F(x) = statistical fraction of specimens that failed at given 
stress or lower 

x = stress 
xu = stress below which no specimens failed 
x0 = characteristic strength, stress at which 63.2 percent 

of specimens failed 
m = Weibull slope 

Usingx = 258.6 MPa (37 500 psi), x„=0 , x0 = 361.3 MPa (52 
396 psi), and m = 47.5 gives 

r / 258.6-0\ 4 7 - 5 

F(x) = l - exp[ - ( - l i 0 -rn 000000126 

Probability of Survival (Test Specimen) 

S1 = l - F ( x ) 

= 3.39 mm (0.133 in.) 

A P P E N D I X B 

Derivation of a Design Equation for Spherical Pressure 
Vessel Shells 

Since the probability of survival S is simply one minus the 
probability of failure, S can be defined by 

S = l - F ( x ) = e x p [ - ( ^ - ) m ] (Bl) 

The probability of survival of a full-size structure S2 in rela­
tion to the probability of survival of a coupon specimen Sj is 
given by 

S2 = ̂ ' = ( l - ^ ) ^ = [ e x p - ( ^ ) m ] K 2 / K l (B2) 

where V\ and V2 are the volumes of the coupon specimen and 

the full-size structure, respectively. Simplifying gives 

The volume of the walls of a spherical pressure vessel is 
given by 

v=—w + ty-R3] (B4) 

(A4) 

where Kis the volume, R is the inside radius, and t is the wall 
thickness. Limiting our discussion to thin-walled spherical 
pressure vessels, the wall thickness can be defined by 
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t=-
PR 

~2x~ 
(B5) 

where P is the internal pressure and x is the tensile stress in the 
walls. Substituting equation (B5) into equation (B4) for t and 
simplifying gives 

4 

which relates the full-size structure's stressed volume to the 
operating stress, Now substituting equation (B6) into equation 
(B3) for V2 gives 

-[(>+£)'-] (B6) 

S,= exp — /*-*., y 4fi3/3F,[(l+P/2.v)3 — 1] 
(B7) 

Given the Weibull parameters for the material, internal 
pressure, and the required probability of survival and the in­
side radius of the vessel shell, equation (B7) then contains only 
one unknown—the operating stress x. With the above design 
specifications, the operating stress can then be solved by itera­
tion. Once the maximum operating stress has been established, 
the required thickness of the spherical pressure vessel can be 
determined from equation (B5). 
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