33 research outputs found

    Muon capture by 3He nuclei followed by proton and deuteron production

    Full text link
    The paper describes an experiment aimed at studying muon capture by 3He{}^{3}\mathrm{He} nuclei in pure 3He{}^{3}\mathrm{He} and D2+3He\mathrm{D}_2 + {}^{3}\mathrm{He} mixtures at various densities. Energy distributions of protons and deuterons produced via μ+3Hep+n+n+νμ\mu^-+{}^{3}\mathrm{He}\to p+n+n + \nu_{\mu } and μ+3Hed+n+νμ\mu^-+{}^{3} \mathrm{He} \to d+n + \nu_{\mu} are measured for the energy intervals 104910 - 49 MeV and 133113 - 31 MeV, respectively. Muon capture rates, λcapp(ΔEp)\lambda_\mathrm{cap}^p (\Delta E_p) and λcapd(ΔEd)\lambda_\mathrm{cap}^d (\Delta E_d) are obtained using two different analysis methods. The least--squares methods gives λcapp=(36.7±1.2)s1\lambda_\mathrm{cap}^p = (36.7\pm 1.2) {s}^{- 1}, λcapd=(21.3±1.6)s1\lambda_\mathrm{cap}^d = (21.3 \pm 1.6) {s}^{- 1}. The Bayes theorem gives λcapp=(36.8±0.8)s1\lambda_\mathrm{cap}^p = (36.8 \pm 0.8) {s}^{- 1}, λcapd=(21.9±0.6)s1\lambda_\mathrm{cap}^d = (21.9 \pm 0.6) {s}^{- 1}. The experimental differential capture rates, dλcapp(Ep)/dEpd\lambda_\mathrm{cap}^p (E_p) / dE_p and dλcapd(Ed)/dEd d\lambda_\mathrm{cap}^d (E_d) / dE_d, are compared with theoretical calculations performed using the plane--wave impulse approximation (PWIA) with the realistic NN interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former results.Comment: 17 pages, 13 figures, accepted for publication in PR

    Search for NN-decoupled dibaryons using the process ppγγXpp \to \gamma \gamma X below the pion production threshold

    Full text link
    The energy spectrum for high energy γ\gamma-rays (Eγ10E_\gamma \geq 10 MeV) from the process ppγγXpp \to \gamma \gamma X emitted at 90090^0 in the laboratory frame has been measured at an energy below the pion production threshold, namely, at 216 MeV. The resulting photon energy spectrum extracted from γγ\gamma-\gamma coincidence events consists of a narrow peak at a photon energy of about 24 MeV and a relatively broad peak in the energy range of (50 - 70) MeV. The statistical significances for the narrow and broad peaks are 5.3σ\sigma and 3.5σ\sigma, respectively. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d1d^\star_1 with a mass of about 1956 MeV which is assumed to be formed in the radiative process ppγd1pp \to \gamma d^\star_1 followed by its electromagnetic decay via the d1ppγd^\star_1 \to pp \gamma mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in Phys.Rev.

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue

    Muon capture by ³He nuclei followed by proton and deuteron production

    Get PDF
    The paper describes an experiment aimed at studying muon capture by He nuclei in pure ³He and D₂+³He mixtures at various densities. Energy distributions of protons and deuterons produced via µ₋+³He-->p + n + n + νµ and µ₋+³He-->d + n + νµ are measured for the energy intervals 10–49 MeV and 13–31 MeV, respectively. Muon capture rates lambdacapp(ΔEp) and lambdacapd(ΔEd) are obtained using two different analysis methods. The least-squares methods give lambdacapp = (36.7±1.2) s–1, lambdacapd = (21.3±1.6) s–1. The Bayes theorem gives lambdacapp = (36.8±0.8) s–1, lambdacapd = (21.9±0.6) s–1. The experimental differential capture rates, dlambdacapp(Ep)/dEp and dlambdacapd(Ed)/dEd, are compared with theoretical calculations performed using the plane-wave impulse approximation with the realistic nearest-neighbor interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former result

    Experimental study of µ-atomic and µ-molecular processes in pure helium and deuterium-helium mixtures

    Get PDF
    We present experimental results of µ-atomic and µ-molecular processes induced by negative muons in pure helium and helium-deuterium mixtures. The experiment was performed at the Paul Scherrer Institute (Switzerland). We measured relative intensities of muonic x-ray K series transitions in (µ3,4He)* atoms in pure helium as well as in helium-deuterium mixtures. The dµ³He radiative decay probabilities for two different helium densities in D2+³He mixture were also determined. Finally, the qHe1s probability for a dµ atom formed in an excited state to reach the ground state was measured and compared with theoretical calculations using a simple cascade model

    3^{3}HeDetectors in Experiments at the Powerful Pulsed Accelerators

    No full text
    A possibility of using a thermal neutron detector in the high gammaquantum and bremsstrahlung fields is considered. The design of the thermal neutron detector consisting of 10 counters filled with ^{3}He under the pressure of 2 atm and enclosed in the polyethylene moderator is described. The results of measuring the neutron recording efficiency and neutron lifetimes by this detector exposed to a neutron flux from the dtreaction and from the ^{252}Cf and PuvBesources are reported. The thicknesses of the polyethylene moderator and the Pblayer used for suppression of the background in the fields of powerful electromagnetic radiation are optimized
    corecore