55 research outputs found

    Atom holography

    Full text link
    We study the conditions under which atomic condensates can be used as a recording media and then suggest a reading scheme which allows to reconstruct an object with atomic reading beam. We show that good recording can be achieved for flat condensate profiles and for negative detunings between atomic Bohr frequency and optical field frequency. The resolution of recording dramatically depends on the relation between the healing length of the condensate and the spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late

    Radiative Corrections to Polarized Inelastic Scattering in Coincidence

    Get PDF
    The coplete analysis of the model-independent leading radiative corrections to cross-section and polarization observables in semi-inclusive deep-inelastic electron-nucleus scattering with detection of a proton and scattered electron in coincidence has been performed. The basis of the calculations consists of the Drell-Yan like representation in electrodynamics for both spin-independent and spin-dependent parts of the cross-section in terms of the electron structure functions. The applications to the polarization transfer effect from longitudinally polarized electron beam to detected proton as well as to scattering by the polarized target are considered.Comment: 18p, to be published in JET

    Inverse bremsstrahlung contributions to Drell-Yan like processes

    Full text link
    The contribution of the sub-process γqql1lˉ2\gamma q \to q' l_1\bar{l}_2 in hadron-hadron interactions is considered. It is a part of one-loop electroweak radiative corrections for the Drell-Yan production of lepton pairs at hadron colliders. It is shown that this contribution should be taken into account aiming at the 1% accuracy of the Drell-Yan process theoretical description. Both the neutral and charged current cases are evaluated. Numerical results are presented for typical conditions of LHC experiments.Comment: 11 pages, 8 figure

    DIRAC - Distributed Infrastructure with Remote Agent Control

    Full text link
    This paper describes DIRAC, the LHCb Monte Carlo production system. DIRAC has a client/server architecture based on: Compute elements distributed among the collaborating institutes; Databases for production management, bookkeeping (the metadata catalogue) and software configuration; Monitoring and cataloguing services for updating and accessing the databases. Locally installed software agents implemented in Python monitor the local batch queue, interrogate the production database for any outstanding production requests using the XML-RPC protocol and initiate the job submission. The agent checks and, if necessary, installs any required software automatically. After the job has processed the events, the agent transfers the output data and updates the metadata catalogue. DIRAC has been successfully installed at 18 collaborating institutes, including the DataGRID, and has been used in recent Physics Data Challenges. In the near to medium term future we must use a mixed environment with different types of grid middleware or no middleware. We describe how this flexibility has been achieved and how ubiquitously available grid middleware would improve DIRAC.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, Word, 5 figures. PSN TUAT00

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    APPROXIMATE CALCULATIONS OF TEMPERATURE FIELDS IN CYLINDRICAL SLUGS OF DIFFERENT GRADES OF STEELS

    No full text
    The offered calculation procedure allows to determine with adequate accuracy the temperature dynamics by section of slug depending on time
    corecore