60 research outputs found

    Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 2: Analysis of site aerosol influence

    Get PDF
    Several validation studies have shown a notable overestimation of the clear sky ultraviolet (UV) irradiance at the Earth's surface derived from satellite sensors such as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI) with respect to ground-based UV data at many locations. Most of this positive bias is attributed to boundary layer aerosol absorption that is not accounted for in the TOMS/OMI operational UV algorithm. Therefore, the main objective of this study is to analyse the aerosol effect on the bias between OMI erythemal UV irradiance (UVER) and spectral UV (305 nm, 310 nm and 324 nm) surface irradiances and ground-based Brewer spectroradiometer measurements from October 2004 to December 2008 at El Arenosillo station (37.1° N, 6.7° W, 20 m a.s.l.), with meteorological conditions representative of the South-West of Spain. <br><br> The effects of other factors as clouds, ozone and the solar elevation over this intercomparison were analysed in detail in a companion paper (Antón et al., 2010). In that paper the aerosol effects were studied making only a rough evaluation based on aerosol optical depth (AOD) information at 440 nm wavelength (visible range) without applying any correction. We have used the precise information given by single scattering albedo (SSA) from AERONET for the determination of absorbing aerosols which has allowed the correction of the OMI UV data. <br><br> An aerosol correction expression was applied to the OMI operational UV data using two approaches to estimate the UV absorption aerosol optical depth, AAOD. The first approach was based on an assumption of constant SSA value of 0.91. This approach reduces the OMI UVER bias against the reference Brewer data from 13.4% to 8.4%. Second approach uses daily AERONET SSA values reducing the bias only to 11.6%. Therefore we have obtained a 37% and 12% of improvement respectively. For the spectral irradiance at 324 nm, the OMI bias is reduced from 10.5% to 6.98% for constant SSA and to 9.03% for variable SSA. Similar results were obtained for spectral irradiances at 305 nm, and 310 nm. <br><br> Contrary to what was expected, the constant SSA approach has a greater bias reduction than variable SSA, but this is a reasonable result according to the discussion about the reliability of SSA values. Our results reflect the level of accuracy that may be reached at the present time in this type of comparison, which may be considered as satisfactory taking into account the remaining dependence on other factors. Nevertheless, improvements must be accomplished to determine reliable absorbing aerosol properties, which appear as a limiting factor for improving OMI retrievals

    Intercomparison of aerosol optical depth measurements in the UVB using Brewer Spectrophotometers and a Li-Cor Spectrophotometer

    Get PDF
    The first Iberian UV radiation intercomparison was held at “El Arenosillo”-Huelva station of the Instituto Nacional de Técnica Aeroespatial (INTA) from September 1 to 10, 1999. During this campaign, seven Brewer spectrophotometers and one Li-Cor spectrophotometer measured the total column aerosol optical depth (AOD) at 306, 310, 313.5, 316.75 and 320 nm. The AOD calibration of one Brewer was transferred to all other Brewers using one day of intensive measurements. The remaining days were used to observe the stability and reproducibility of the AOD measurements by the different instruments. All Brewer spectrophotometers agreed to within an AOD of 0.03 during the whole measurement campaign. The differences in AOD between the Li-Cor spectrophotometer and the Brewer spectrophotometers were between −0.07 and +0.02 at 313.5, 316.75, and 320 nm. This investigation demonstrates the possibility of using the existing worldwide Brewer network as a global UV aerosol network for AOD monitoring.The first Iberian UV radiation intercomparison was supported by the CICYT, project CLI97- 0345-C05-05 under the coordination of INM

    Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    No full text
    International audienceWe report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company) covering the range from 300?1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain) of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study

    Cloud cover detection combining high dymanics range sky images and ceilometer measurements

    Get PDF
    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.This work was supported by the Andalusia Regional Government (project P12-RNM-2409) and by the Consejería de Educación, Junta de Castilla y León (project VA100U14).Spanish Ministry of Economy and Competitiveness (CGL2013-45410-R, CMT2015-66742-R, CGL2016-81092-R, and FJCI-2014-22052).FEDER funds under the projects CGL2013-45410-R, CMT2015-66742-R, CGL2016-81092-R.“Juan de la Cierva-Formación” (FJCI-2014-22052) program.European Union H2020-INFRAIA-2014-2015 project ACTRIS-2 (grant agreement No. 654109

    On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain)

    Get PDF
    This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days). The mean total concentration (&lt;i&gt;N&lt;/i&gt;&lt;sub&gt;T&lt;/sub&gt;) was 8660 cm&lt;sup&gt;−3&lt;/sup&gt; and the mean concentrations in the nucleation (&lt;i&gt;N&lt;/i&gt;&lt;sub&gt;NUC&lt;/sub&gt;), Aitken (&lt;i&gt;N&lt;/i&gt;&lt;sub&gt;AIT&lt;/sub&gt;) and accumulation (&lt;i&gt;N&lt;/i&gt;&lt;sub&gt;ACC&lt;/sub&gt;) particle size ranges were 2830 cm&lt;sup&gt;−3&lt;/sup&gt;, 4110 cm&lt;sup&gt;−3&lt;/sup&gt; and 1720 cm&lt;sup&gt;−3&lt;/sup&gt;, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm&lt;sup&gt;−3&lt;/sup&gt; and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;NUC&lt;/sub&gt; and &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;ACC&lt;/sub&gt;. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;ACC&lt;/sub&gt; which suppressed the new particle formation (decreasing &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;NUC&lt;/sub&gt;). Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles moved offshore due to the land breeze and had an impact on the particle burden at noon, especially when the wind was blowing from the NW sector in the morning during summer time. This increased &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;NUC&lt;/sub&gt; and &lt;i&gt;N&lt;/i&gt;&lt;sub&gt;AIT&lt;/sub&gt; by factors of 3.1 and 2.4, respectively. Nucleation events with the typical "banana" shape were characterised by a mean particle nucleation rate of 0.74 cm&lt;sup&gt;−3&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt;, a mean growth rate of 1.96 nm h&lt;sup&gt;−1&lt;/sup&gt; and a mean total duration of 9.25 h (starting at 10:55 GMT and ending at 20:10 GMT). They were observed for 48 days. Other nucleation events were identified as those produced by the emissions from the industrial areas located at a distance of 35 km. They were observed for 42 days. Both nucleation events were strongly linked to the marine air mass origin

    Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula

    Get PDF
    A better understanding of aerosol radiative properties is a crucial challenge for climate change studies. This study aims at providing a complete characterization of aerosol radiative effects in different spectral ranges within the shortwave (SW) solar spectrum. For this purpose, long-term data sets of aerosol properties from six AERONET stations located in the Iberian Peninsula (southwestern Europe) have been analyzed in terms of climatological characterization and inter-annual changes. Aerosol information was used as input for the libRadtran model in order to determine the aerosol radiative effect (ARE) at the surface in the ultraviolet (AREUV), visible (AREVIS), near-infrared (ARENIR), and the entire SW range (ARESW) under cloud-free conditions. Over the whole Iberian Peninsula, yearly aerosol radiative effects in the different spectral ranges were found to be −1.1 < AREUV < −0.7, −5.7 < AREVIS < −3.5, −2.6 < ARENIR < −1.6, and −8.8 < ARESW < −5.7 (in W m−2). Monthly means of ARE showed a seasonal pattern with larger values in spring and summer. The aerosol forcing efficiency (AFE), ARE per unit of aerosol optical depth, has also been evaluated in the four spectral ranges. AFE exhibited a dependence on single scattering albedo as well as a weaker one on the Ångström exponent. AFE is larger (in absolute value) for small and absorbing particles. The contributions of the UV, VIS, and NIR ranges to the SW efficiency varied with the aerosol types. The predominant aerosol size determined the fractions AFEVIS/AFESW and AFENIR/AFESW. The AFEVIS was the dominant contributor for all aerosol types, although non-absorbing large particles caused more even contribution of VIS and NIR intervals. The AFEUV / AFESW ratio showed a higher value in the case of absorbing fine particles

    Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 1: Analysis of parameter influence

    Get PDF
    The main objective of this study is to compare the erythemal UV irradiance (UVER) and spectral UV irradiances (at 305, 310 and 324 nm) from the Ozone Monitoring Instrument (OMI) onboard NASA EOS/Aura polar sun-synchronous satellite (launched in July 2004, local equator crossing time 01:45 p.m.) with ground-based measurements from the Brewer spectrophotometer #150 located at El Arenosillo (South of Spain). The analyzed period comprises more than four years, from October 2004 to December 2008. The effects of several factors (clouds, aerosols and the solar elevation) on OMI-Brewer comparisons were analyzed. The proxies used for each factor were: OMI Lambertian Equivalent Reflectivity (LER) at 360 nm (clouds), the aerosol optical depth (AOD) at 440 nm measured from the ground-based Cimel sun-photometer (&lt;a href="http://aeronet.gsfc.nasa.gov"target="_blank"&gt;http://aeronet.gsfc.nasa.gov&lt;/a&gt;), and solar zenith angle (SZA) at OMI overpass time. The comparison for all sky conditions reveals positive biases (OMI higher than Brewer) 12.3% for UVER, 14.2% for UV irradiance at 305 nm, 10.6% for 310 nm and 8.7% for 324 nm. The OMI-Brewer root mean square error (RMSE) is reduced when cloudy cases are removed from the analysis, (e.g., RMSE~20% for all sky conditions and RMSE smaller than 10% for cloud-free conditions). However, the biases remain and even become more significant for the cloud-free cases with respect to all sky conditions. The mentioned overestimation is partially due to aerosol extinction influence. In addition, the differences OMI-Brewer typically decrease with SZA except days with high aerosol loading, when the bias is near constant. The seasonal dependence of the OMI-Brewer difference for cloud-free conditions is driven by aerosol climatology. &lt;br&gt;&lt;br&gt; To account for the aerosol effect, a first evaluation in order to compare with previous TOMS results (Antón et al., 2007) was performed. This comparison shows that the OMI bias is between +14% and +19% for UVER and spectral UV irradiances for moderately-high aerosol load (AOD&gt;0.25). The OMI bias is decreased by a factor of 2 (the typical bias varies from +8% to +12%) under cloud-free and low aerosol load conditions (AOD&lt;0.1). More detailed analysis of absorbing aerosols influence on OMI bias at our station is presented in a companion paper (Cachorro et al., 2010)

    EVALUATION OF RETRIEVED AEROSOL EXTINCTION PROFILES USING AS REFERENCE THE AEROSOL OPTICAL DEPTH DIFFERENCES BETWEEN VARIOUS HEIGHTS

    Get PDF
    Aerosol extinction vertical profiles at Granada (Spain) are calculated with the GRASP (Generalized Retrieval of Aerosol and Surface Properties) code using as input Aerosol Optical Depth (AOD) and sky radiance measurements from AERONET (AEerosol RObotic NETwork) and ceilometer RCS (Range Corrected Signal) profiles, both corresponding to the Granada (Spain) station. This methodology is so called GRASPpac due to the combination of sun/sky photometer and ceilometer on GRASP. In order to evaluate the accuracy of these retrieved extinction profiles at Granada, two more nearby AERONET stations, located at different altitudes, are used. The AOD difference of the three choosen AERONET sun/sky photometers have been used to calculate the Integrated Aerosol Extinction (IAE) at different height layers. These three AERONET sun/sky photometers are used as a reference and compared against the integrated extinction at the same layers from the extinction profiles retrieved by GRASPpac. The differences between AERONET and GRASPpac retrieved IAE values indicate that GRASPpac aerosol extinction profiles are at least within the uncertainty of the sun/sky photometer measurements, but GRASPpac method overestimates the AERONET extinction at low altitudes and underestimates it at high levels. The most accurate and precise retrieved extinction correspond to the intermediate layer with a mean bias error (MBE ± standard deviation) of 0.00 ± 0.01 (0 ± 59%) for 1020 nm, and the worst integrated extinction results were obtained for the upper layers with a MBE of −0.01 ± 0.02 (28 ± 36%) for 1020 nm. In general these MBE values increases for shorter wavelengths. In order to obtain a complete characterization of this bias, the dependence of the obtained differences on the aerosol size and the solar zenith angle, among others, are analysed in detail. Finally, the behaviour of vertically-resolved aerosol extinction at Granada is evaluated using averages of the retrieved profiles from November of 2012 to December of 2017. The highest IAE values are found in Summer with mean values of 0.09 for the lower layers and 0.07 for the upper ones, both at 440 nm wavelength.Andalusia Regional Government (project P12-RNM-2409)“Consejería de Educación” of “Junta de Castilla y León” (project VA100U14)Spanish Ministry of Economy and Competitiveness under the projects, CMT2015-66742-R, CGL2016-81092-R, “Juan de la Cierva-Incorporación” program (FIJCI-2016-30007) and CGL2017-90884-RED
    corecore