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1Grupo deÓptica Atmosf́erica, Universidad de Valladolid GOA-UVA, Valladolid, Spain
2Departamento de Fı́sica, Universidad de Extremadura, Badajoz, Spain
3ESAt “El Arenosillo”, INTA, Huelva, Spain
4Finnish Meteorological Institute (FMI), Kuopio, Finland
5GEST Center, University of Maryland, Baltimore County, Maryland, USA
6Laboratory of Atmosphere, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA
* now at: Departamento de Fı́sica Aplicada, Universidad de Granada, Granada, Spain

Received: 21 April 2010 – Published in Atmos. Chem. Phys. Discuss.: 1 July 2010
Revised: 24 November 2010 – Accepted: 25 November 2010 – Published: 13 December 2010

Abstract. Several validation studies have shown a notable
overestimation of the clear sky ultraviolet (UV) irradiance
at the Earth’s surface derived from satellite sensors such
as the Total Ozone Mapping Spectrometer (TOMS) and the
Ozone Monitoring Instrument (OMI) with respect to ground-
based UV data at many locations. Most of this positive
bias is attributed to boundary layer aerosol absorption that
is not accounted for in the TOMS/OMI operational UV al-
gorithm. Therefore, the main objective of this study is to
analyse the aerosol effect on the bias between OMI ery-
themal UV irradiance (UVER) and spectral UV (305 nm,
310 nm and 324 nm) surface irradiances and ground-based
Brewer spectroradiometer measurements from October 2004
to December 2008 at El Arenosillo station (37.1◦ N, 6.7◦ W,
20 m a.s.l.), with meteorological conditions representative of
the South-West of Spain.

The effects of other factors as clouds, ozone and the solar
elevation over this intercomparison were analysed in detail
in a companion paper (Antón et al., 2010). In that paper the
aerosol effects were studied making only a rough evaluation
based on aerosol optical depth (AOD) information at 440 nm
wavelength (visible range) without applying any correction.
We have used the precise information given by single scatter-
ing albedo (SSA) from AERONET for the determination of
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absorbing aerosols which has allowed the correction of the
OMI UV data.

An aerosol correction expression was applied to the OMI
operational UV data using two approaches to estimate the
UV absorption aerosol optical depth, AAOD. The first ap-
proach was based on an assumption of constant SSA value
of 0.91. This approach reduces the OMI UVER bias against
the reference Brewer data from 13.4% to 8.4%. Second ap-
proach uses daily AERONET SSA values reducing the bias
only to 11.6%. Therefore we have obtained a 37% and 12%
of improvement respectively. For the spectral irradiance at
324 nm, the OMI bias is reduced from 10.5% to 6.98% for
constant SSA and to 9.03% for variable SSA. Similar results
were obtained for spectral irradiances at 305 nm, and 310 nm.

Contrary to what was expected, the constant SSA ap-
proach has a greater bias reduction than variable SSA, but
this is a reasonable result according to the discussion about
the reliability of SSA values. Our results reflect the level of
accuracy that may be reached at the present time in this type
of comparison, which may be considered as satisfactory tak-
ing into account the remaining dependence on other factors.
Nevertheless, improvements must be accomplished to deter-
mine reliable absorbing aerosol properties, which appear as
a limiting factor for improving OMI retrievals.
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1 Introduction

It is well established by several validation works (Arola
et al., 2005; Ant́on et al., 2007; Kazantzidis et al., 2006,
2009; Arola et al., 2009) that UV irradiance at the ground
given by satellite instruments such as TOMS (Total Ozone
Mapping Spectrometer) and OMI (Ozone Monitoring In-
strument) (Krotkov et al., 2002) is overestimated compared
with ground based UV measurements at many polluted loca-
tions. This positive (satellite overestimation) clear-sky bias
varies widely depending on the climatological conditions at
validation sites. Most of this positive bias is attributed to
boundary layer aerosol absorption. TOMS UV algorithm has
an Aerosol Index-based correction for the absorbing aerosol
which is not included in the current version of OMI UV al-
gorithm (Krotkov et al., 2005; Arola et al., 2009).

The OMI instrument is a Dutch-Finnish push-broom UV-
Visible spectrometer, a contribution to NASA-EOS/Aura
mission, launched in July 2004. It is the successor of
the long-lived NASA-TOMS programme (onboard different
platforms: Nimbus-7, Meteo-3 and Earth-Probe) which be-
gan at the end of the 1970’s years to measure atmospheric
composition. First validation of OMI UV data can be found
in the work of Tanskanen et al. (2007). The validation results
showed a good agreement between OMI-derived daily ery-
themal doses and the daily doses calculated from the ground-
based spectral UV measurements from 18 reference instru-
ments (stations in Europe, Canada, Japan, USA and Antarc-
tic). However, a positive OMI bias up to∼50% was found
for polluted sites significantly affected by absorbing aerosols
or trace gases.

Recent publications on OMI operational UV validation
have been carried out by Buchard et al. (2008), Ialongo et
al. (2008) and Weihs et al. (2008) at different European loca-
tions but no aerosol corrections were made. More recently,
the works of Kazadzis et al. (2009), Arola et al. (2009) and
Ialongo et al. (2010) have applied the aerosol absorption cor-
rection suggested earlier in Krotkov et al. (2005) and Arola
et al. (2005). The first work applies the correction based on
local aerosol in the urban location of Thessaloniki (Greece),
showing that the OMI instrument overestimates UV spectral
irradiances at 305 nm, 324 nm, and 380 nm by 30%, 17% and
13%, respectively. In the paper of Arola et al. (2009) the
correction is based on a global climatology of aerosols, us-
ing combined information of aerosol models and AERONET
data. This work has been carried out over seven European
sites (including El Arenosillo station) and showed a reduc-
tion of the bias from 22% to 17% for the UV spectral ir-
radiance at 324 nm under different atmospheric conditions.
Ialongo et al. (2010) following a methodology very similar
to that of Kazadzis et al. (2009) for the retrieval of the single
scattering albedo (SSA) and the absorption aerosol optical
depth (AAOD, based on the comparison of measured spectra
by Brewer and modeled data) obtains a strong bias reduction
for spectral OMI irradiances at 324.5 nm (from 18% to 2%)

and also for erythemal dose rates (from 25% to 8%) in the
Rome urban site.

In this framework, our work is focused on the com-
parison between OMI UV irradiance products (erythemal
irradiance (UVER), and spectral irradiances at 305, 310
and 324 nm) and the ground-based UV measurements us-
ing a well-calibrated Brewer spectroradiometer located at
El Arenosillo (37.1◦ N, 6.7◦ W, 20 m a.s.l.), representative
of the SW of Spain. In a companion paper (Antón et
al., 2010) the effect of several factors as clouds, aerosols,
ozone and the solar elevation on OMI-Brewer UV bias were
analysed and compared with previous TOMS-Brewer results
(Antón et al., 2007). In the previous works, as in Antón
et al. (2010), the aerosol effect was studied in terms of
aerosol extinction optical depth (AOD) measured at visible
440 nm wavelength. The comparison results showed that un-
der moderate-high aerosol load (AOD(440 nm)> 0.25) the
OMI bias is about 19–15% for UVER and spectral UV irra-
diances. Under cloud-free and low aerosol load conditions
(AOD(440 nm)< 0.1) the OMI bias was smaller∼11% for
UVER, and similar spectral results. These studies had not
attempted correcting OMI UV data for aerosol absorption,
because no information about aerosol absorption properties
at UV wavelengths was available at our site.

In this paper we first analyse absorption properties of
local aerosols at El Arenosillo site, representative area of
South-West Europe, summarizing our previous measure-
ments (Toledano et al., 2007a, b, 2009; Cachorro et al., 2006,
2008; Prats, 2009). Discrimination of absorbing and non-
absorbing aerosols is a challenging task, related to the dis-
crimination of aerosol types. Measurements of AAOD or
SSA are routinely available only in the visible wavelengths
(440nm and longer wavelengths (Dubovik et al., 2002). The
uncertainty of these parameters from AERONET inversions
is not yet well-known. Furthermore, the spectral dependence
of SSA depends on aerosol type, thus, AERONET SSA val-
ues at visible wavelengths can not be simply extrapolated
into UV wavelengths (Krotkov et al., 2005, 2009; Arola et
al., 2009).

El Arenosillo is an appropriate location for aerosol studies
because of a high frequency of cloud-free days, and a great
variety of aerosol types with a high occurrence of desert dust
outbreaks from Africa during all seasons (Toledano et al.,
2007a, b, 2009). In addition, this location enjoys availability
of long term measurements of different aerosol types. The
period of study is determined by availability of OMI data
from October 2004 to December 2008.

The paper is organized as follows. Site characteris-
tics, ground and satellite-based measurements are briefly de-
scribed in Sect. 2. Section 3 introduces the methodology
used for comparison between OMI and Brewer measure-
ments. The comparison results are presented in Sect. 4 with
focus on different approaches for OMI aerosol correction. Fi-
nally, Sect. 5 summarizes the main conclusions.
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2 Site, instruments and data

Short comments about site, instruments and the type of data
are given in this paper. For a more detailed description read
the earlier mentioned companion paper (Antón et al., 2010).

The site of study is located at “El Arenosillo” Atmospheric
Sounding Station (ESAt-El Arenosillo) in Hueva, South-
West of Spain (37.1◦ N, 6.7◦ W, 20 m a.s.l.). This station be-
longs to the Earth Observation, Remote Sensing and Atmo-
sphere Department, National Institute of Aerospace Technol-
ogy of Spain (INTA). This centre participates in the Global
Ozone Observing System (GO3OS) of the Global Atmo-
sphere Watch (GAW) program of World Meteorological Or-
ganization (WMO) as station #213. Data gathering, retrieval
and reporting procedures at these stations are standardized
by the WMO quality assurance procedures.

Aerosol data are provided by the CIMEL-AERONET sun-
photometer available since year 2000 (Toledano et al., 2007a,
b, 2009). AOD and the derived̊Angstr̈om coefficient (also
denoted byα) are obtained from direct sun measurements
using the current version 2 of AERONET algorithm or by
the GOA algorithm (Cachorro et al., 1987, 2001; Ortiz de
Galisteo et al., 2009). The AAOD and SSA parameters are
derived from the more sophisticated inversion algorithm used
by AERONET.

The UV irradiance weighted with the erythemal action
spectrum adopted by the Commission Internationale de
l’Eclairage (CIE) (McKinlay and Diffey, 1987) (denoted as
UVER) and absolute spectral UV irradiances (Watts/nm/m2)

(at 305 nm, 310 nm and 324 nm) were used for the compari-
son between OMI UV products and Brewer measurements.

The OMI instrument is a nadir viewing spectrometer that
measures solar reflected and backscattered light in the wave-
length range from 270 nm to 500 nm with a spectral reso-
lution of 0.45 nm in the ultraviolet and 0.63 nm in the vis-
ible interval. The instrument has a 2600 km wide viewing
swath and it is capable of daily, global contiguous mapping.
The OMI surface UV algorithm (OMUVB) is based on the
TOMS UV algorithm developed at NASA Goddard Space
Flight Center (Krotkov et al., 2002, 2005; Tanskanen et al.,
2007; Torres et al., 2007). In this study OMI UV prod-
ucts correspond to the new version of the OMI level 1 (ra-
diance and irradiance) and level 2 (atmospheric data prod-
ucts) data set named collection 3. This new version takes
advantage of a coherent calibration and revised dark current
correction. For more information, please, visit the NASA
DISC athttp://disc.gsfc.nasa.gov/Aura/OMI/for EOS Aura
OMI level 2 orbit data, and the Aura Validation data Center
athttp://avdc.gsfc.nasa.govfor EOS-Aura OMI station over-
pass data. Please consult the OMI README files for the
latest OMI data product information.

For the latitude of El Arenosillo station, OMI instrument
provides more than one overpass per day. In this work, the
daily OMI data are derived from the satellite overpass closest
to the ground-based location. Thus, the distance between the

centre of the satellite pixel and the station vary from 0.1 km
to 48 km, with an average value (±1 standard deviation) of
(11.5± 8.1) km. In addition, Brewer data recorded closest to
the selected OMI overpass time (between 12:30 and 14:30 lo-
cal solar time for El Arenosillo station) were used. The days
with differences between the time of Brewer measurements
and the OMI overpass time higher than 15 minutes (∼5% of
all data) are removed in the comparison. Thus, the average
of the daily time differences is (6± 4) min.

In a previous paper by Antón et al. (2010), OMI-Brewer
irradiance under all-sky conditions with 1206 available data,
representing 80% of total days during the period of study,
were compared. In that work, the OMI Lambertian Equiv-
alent Reflectivity (LER) at 360 nm was used to describe
cloud–free conditions. A certain day was classified as cloud-
free if LER was lower than 10% (Kalliskota et al., 2000).
Thus, 703 (49% of the total days) days were selected as
cloud-free. In this study, CIMEL AERONET cloud screen-
ing data have been also used to define cloud-free conditions,
due to the need of simultaneous AOD and OMI-Brewer ir-
radiance data. Thus, the number of selected data is slightly
lower, 633, and finally reduced to 583 (45% of the total days)
in order to use the available SSA values, as we explain below.
This high number of values (as was shown in Arola et al.,
2009) reflects the good weather conditions of El Arenosillo
for solar radiation and aerosol studies, currently providing
of one of the best ten AERONET long-continuous data-set,
suitable to analyse the OMI bias due to aerosols.

3 Methodology

The comparison analysis for irradiance is carried out by re-
gression analysis and also by the mean bias error (MBE) and
the mean absolute bias error (MABE). These parameters are
defined by:

MBE = 100·
1

N

N∑
i=1

OMI −Brewer

OMI
(1)

MABE = 100·
1

N

N∑
i=1

|OMI −Brewer|

OMI
(2)

The uncertainty of MBE and MABE is characterized by the
standard error (SE). These two statistical parameters were
used according to the methodology used in previous works
(Antón et al., 2007, 2010).

For the OMI UV data correction, the formula provided by
Krotkov et al. (2005) based on the aerosol absorbing correc-
tion factor (CAA) was used:

UVcorr(λ)=CAA(λ) ·UVoperational(λ), (3)
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whereλ is the corresponding OMI working wavelength in
nm. CAA can be estimated by the aerosol absorption optical
thickness (AAOD) as follows:

CAA(λ)=
1

[1+b ·AAOD(λ)]
(4)

The denominator describes the linear dependence of the over-
estimation ratio of satellite-based UV on AAOD beingb
the constant slope. This parameter weakly depends on so-
lar zenith angle (SZA) and aerosol type (Arola et al., 2005;
Krotkov et al., 2005). A value ofb = 3 has been used as the
most current value. However, according to its definition and
following the approach of Kazadzis et al. (2009), the param-
eterb must be determined from the available data. Although
CAA is applied to all OMI UV products, the analysis is re-
stricted toλ = 340 nm which is the single wavelength avail-
able for AAOD.

Therefore, AOD and AAOD (or the equivalent SSA) at UV
wavelengths are necessary for OMI correction data. AAOD
(or SSA) needs more sophisticated inversion algorithms for
its determination, presenting a high uncertainty when avail-
able. These parameters are retrieved at visible-NIR spectral
range by the AERONET inversion algorithm. This algorithm
is based on almucantar radiance data, restricting SZA to high
values and with others limitations, such as AOD(440 nm)
greater than 0.4. All these restrictions considerably reduce
the number of available site-data. In the UV range, AOD val-
ues are more scarce than those at visible or near infrared in
AERONET stations. In addition, there is no current retrieval
methodology available with AERONET data for AAOD or
SSA in the UV range. To overcome this issue, Krotkov et
al. (2005) used UV-MFRSR radiometer aerosol data, and in
the works of Kazadzis et al. (2009) and Ialongo et al. (2010)
all the aerosol information was derived from Brewer mea-
surements. However, these methodologies present some lim-
itations for aerosol retrieval radiative properties due to the
low intrinsic sensitivity of SSA to UV irradiance values.

SSA is a function of the wavelength and this dependence
can be used to define the aerosol type. Most current discrimi-
nation of aerosol types is based on AOD-alpha plots informa-
tion (Eck et al., 1999; Toledano et al., 2007a) which may give
additional information to select partially absorbing aerosols,
but not to retrieve reliable absorbing properties. Therefore,
here different approaches will be followed, from AERONET
aerosol information based only on AOD-alpha to a more de-
tailed approaches based on SSA or AAOD.

Moreover, Aerosol index AI (Hsu et al., 1999; Torres et
al., 1999) provided by the OMI sensor also gives information
about absorbing aerosols. In this study, this approach has
been explored in correspondence with AOD-alpha or SSA
values in order to get more detailed aerosol information.

4 Results and discussion: aerosol effect on OMI bias

The results of our previous paper of Antón et al. (2010) must
be borne in mind for this analysis. The overestimation of
OMI irradiance values about 13% for cloud-free conditions
and the initial evaluation of aerosol influence were very in-
formative. Nevertheless, that paper did not analyse the in-
fluence of absorbing and non-absorbing aerosols on the ob-
served OMI bias and hence no correction could be applied.

It is needed to achieve a more detailed analysis of absorb-
ing aerosols in order to correct its effect on OMI bias. This
topic will be discussed in the next sections. However, the first
issue is how to identify absorbing aerosols. As already men-
tioned different approaches have been considered depending
on the available aerosol information.

4.1 Absorbing aerosol determination based on
AOD-alpha and AI information

A first approach for determining absorbing aerosols based
on AOD-alpha information was evaluated and its relation-
ship with OMI bias was investigated. The most common
and widely available information about aerosol properties are
AOD and alpha parameters. Thus, climatological tables for
both parameters are provided by AERONET. However, this
is not the case for SSA.

Values of AOD at UV wavelengths are needed to perform
this analysis. The standard sun-photometer installed at El
Arenosillo has no measurements at UV wavelengths since it
is a polarized instrument. In order to overcome this draw-
back, AOD at 340 nm was measured by another Cimel pho-
tometer which was installed at our station between June 2006
and August 2007 within the period of study. Thus, AOD
values at 440 nm and the alpha parameters have been used
to extrapolate the AOD to UV wavelengths. This approach
has been validated using the measurements of AOD values
at 340 nm. In this sense, Fig. 1a shows a good agreement
between the measured and calculated values at 340 nm.

It would be desirable to have AOD values at shorter UV
wavelength, lower than 340 nm, but only Cimel data at this
wavelength are available at this moment. AOD Brewer data
were not used in this work since there is currently a high
disagreement between our retrieved Brewer data and Cimel
data at UV wavelengths. Although many works give a good
assessment about AOD Brewer retrieval (e.g., Gröbner et
al., 2001; Marenco et al., 2002; Gröbner and Meleti, 2004;
Kazadzis et al., 2005, 2007; Cachorro et al., 2009) some
problems remain that must be solved to have reliable Brewer
AOD data in an operational way, without additional measure-
ments as in the works by Kazadzis et al. (2005, 2007). Fur-
ther improvements are necessary in calibration constants to
obtain operational AOD Brewer data.

It is interesting to analyse the relationship between
AOD(340 nm) and AOD(440 nm) (Fig. 1b) since part of
the information given at UV range is derived from visible
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Fig. 1. (a)Calculated AOD at 340 nm (based on extrapolated data at
440 nm using the alpha climatological AERONET values) as func-
tion of measured AOD at 340 nm during a year of measurements
and its fit;(b) calculated AOD values at 340 nm as function of the
measured AOD at 440 nm during the analysed period (2004–2008)
for alpha less and greater than 0.82. Also both fits are shown.

spectral range and in this case, by the alpha coefficient or
Ångstr̈om exponentα (hereafter we use indistinctly alpha
or α). The plot shows two branches: one corresponding to
the black points and the other to the grey points. This be-
haviour could disagree with the expected more linear cor-
relation between both wavelengths (or between others pair
of wavelengths: i.e., 440–670, etc.). Nevertheless, this be-
haviour appears when there are two well defined groups of
size particles.

These findings are based on the characterization of AOD-
alpha aerosol climatology in El Arenosillo given by Toledano
et al. (2007a). The histogram of frequencies of the alpha
parameter given in Fig. 2a (see also Fig. 7 in Toledano et
al. (2007a) for the period 2000–2005) shows two separated
modes atα = 0.82, defining coarse and fine-moderate size
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Fig. 2. (a)Frequency histogram of alpha values and(b) plot of al-
pha versus AOD at 440 nm during the analysed OMI period (2004–
2008) under cloud-free conditions.

particles. The peak of the coarse mode, aboutα = 0.5, is
mainly due to desert dust aerosol type and the other mode
(aboutα = 1.2) is mainly related to the prevailing coastal
marine aerosols. Fine particles have a low weight in the
histogram for our station but, in the latter mode, continen-
tal aerosol type and fine particles associated with polluted or
other type of events have been included.

Hence, the cloud-free data set have been divided into
two groups, one of alpha values smaller than 0.82 and an-
other one with values equal or greater than 0.82 (represent-
ing the 28.3% and 71.7% of all cloud-free cases, respec-
tively) according to the information given by Figs. 1b and
2a. In addition, both modes or branches can be clearly
distinguished in Fig. 1b when the value of AOD(440 nm)
reaches 0.25. For AOD(440 nm) values lower than 0.25 both
branches are joined, being difficult to separate both groups.
Therefore, AOD(440 nm)= 0.25 is considered as the limit-
ing point between both branches. The additional informa-
tion given by the alpha parameter allows us to perform this
separation for lower AOD(440 nm) values. Figure 2b shows
the relationship between the alpha coefficient and AOD at
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440 nm. Two data sets of AOD(440 nm)≥ 0.25 and one data
set AOD(440 nm)<0.25. can be very clearly seen. These two
groups of high AOD differentiate between moderate-fine (al-
pha greater than 0.82) related to polluted aerosol episodes
and large particles (alpha smaller than 0.82) associated with
desert dust particles. Hence, it is expected that these two
groups may represent absorbing aerosols.

We recall that desert dust (DD) aerosols attenuate the
UV radiation more strongly than other aerosol types with
the same AOD due to their low single scattering albedo
at UV wavelengths (Krotkov et al., 1998; Meloni et al.,
2003). In the case of our area of study and taking into ac-
count their characteristics (Toledano et al., 2007a, b) polluted
aerosols are represented by those arriving from industrial-
urban areas mixed with marine or continental aerosols, but
not pure coastal-marine aerosols (AOD(440 nm) lower than
0.25). However, values of high alpha and AOD(440 nm) may
also correspond to biomass-burning (BB) aerosols. This type
of aerosols corresponds to isolated episodes well identified in
our station (Cachorro et al., 2008). These aerosols are mainly
related to cases of local forest fires and those arriving from
Portugal during the period of study. BB aerosols correspond
to 5–6 points and, hence, represent a low percentage of the
total number of cases (about 0.5–1%).

Figure 3a shows the relationship between the relative dif-
ferences OMI-Brewer and the valid associated values of
AOD at 340 nm for cloud-free conditions (white rhomboid
points). A very low correlation is found withR2

= 0.16 (R =

0.4). This correlation is notably improved when data with al-
pha below 0.82 are selected (grey points), givingR2

= 0.42
(or R = 0.65). The set of values with AOD(440 nm)> 0.25
andα ≥ 0.82 is shown as red points. The relationship be-
tween OMI-Brewer differences and AOD at 340 nm presents
a great variability, depending on the site or aerosol type (e.g.,
Kazantzidis et al., 2006; Ialongo et al., 2008; Buchard et
al., 2008). Ant́on et al. (2007) found a better correlation for
binned data, showing clearly that the OMI bias increases as
the AOD increase. Note that this result is relevant it is the
same that working with the case of SSA constant as we will
discuss later in this paper.

In order to gain more information about our aim to se-
lect absorbing aerosols, Fig. 3b shows the differences OMI-
Brewer as function of AI. Similar to above, regressions were
obtained showing very poor correlation values. However, ac-
cording to AI values most points of the selected set of high
AOD(440 nm) appear as non-absorbing (red points) with
the exception of few of them with AI values greater than
0.5, corresponding to BB aerosols (located close but at the
right of the vertical line AI= 0.5). We have taken AI= 0.5
as the limiting value between absorbing and non-absorbing
aerosol according to Krokov et al. (2005). The other set with
AOD(440 nm)> 0.25 andα < 0.82 correspond to desert dust
(DD) which is located at the top-right, appearing as absorb-
ing data.
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 Fig. 3. (a)Dependence of the relative difference between OMI and

Brewer UVER with respect to the aerosol optical depth (AOD) at
340 nm for cloud-free conditions. The two fits are shown(b) OMI
bias as function of AI index where different subsets of aerosols
specified by alpha and AOD values are represented (see text). “all
alpha data” set includes white, grey and red points.

We have plotted AOD(440 nm) versus AI in Fig. 4 in or-
der to improve the classification of absorbing aerosols. Most
red points are in the first quadrant except the points corre-
sponding to the mentioned biomass burning (BB). This re-
sult was not expected as indicated above (Fig. 3b) since red
points were expected at the top-right quadrant. Grey points
(alpha smaller than 0.82) are located in the other three quad-
rants. The right-top quadrant defines the desert dust (DD)
and biomass-burning BB cases as expected.

AI is an efficient way to detect absorbing aerosols, but
it is more difficult to retrieve since it is also sensitive to
AOD and SSA quantitative information. Bear in mind that
AI is very sensitive to the aerosol altitude and increasing
with altitude, if other relevant factors, as AOD and SSA
are the same, hence not very sensitive to the presence of
aerosols in the boundary layer or low layers in the tro-
posphere. Therefore, the red points may provide more
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Fig. 4. AOD at 440 nm as function of AI index where different
subsets of aerosols are indicated. “all alpha data” set includes white,
grey and red points.

information about the altitude than about the strength of ab-
sorption. These red points may be associated with pol-
luted boundary layer aerosols and also related to sulphates
composition (Gonzalez-Castanedo, 2007) or more scattering
aerosols. Because of this apparent inconsistency in the clas-
sification of absorbing and non-absorbing aerosols based on
AOD-alpha and AI information, the available values of SSA
will be used in the next section.

4.2 Absorbing aerosol based on SSA values and its
relation with AOD, alpha and AI

Two groups of high AOD(440 nm) with potential absorbing
properties have been selected, with alpha smaller and greater
than 0.82. It is worth noting that they only correspond to a
small subset of the total free-cloud data (15%). Figures 3–4
show the behaviour of these two subsets and also the whole
data set in order to distinguish the different absorbing fea-
tures of these data. Due to the insufficient information with
AI and AOD-alpha parameters, the available SSA values at
our station given by AERONET must be considered, as the
most relevant parameter to define the absorbing properties of
aerosols.

AERONET provides SSA (or AAOD) values at two level
of quality (level 1.5 is cloud screening and level 2 requires
post-calibrated data together with manual inspection) and
at the four aerosol wavelengths (440, 670, 870, 1020 nm)
according to AERONET inversion algorithm (Dubovik and
King, 2000; Dubovik et al., 2002). However the clima-
tological studies of these SSA data are not usually feasi-
ble at most AERONET sites. Level 2 for SSA requires a
set of restrictions for inversion: post-calibrated data, SZA
greater than 50◦; 21 azimuth angles, high AOD values,
etc., (see for detail,http://aeronet.gsfc.nasa.gov/newweb/

Documents/AERONETcriteriafinal1.pdf, and Prats et al.,
2008), which reduce considerably the data and hence it is
difficult to have a representative climatology. The restriction
of AOD(440 nm)≥ 0.4 eliminates most of the aerosol data,
as in the case of our station.

All these conditions make impossible to obtain a clima-
tology based on AERONET level 2 data nor a reliable sea-
sonal characterization at El Arenosillo in spite of using more
than nine continuous years of data and taking into account
its excellent weather conditions (Prats et al., 2008). Fur-
thermore, the low number of data is not sufficient to anal-
yse OMI irradiance data and they are only representative of
desert dust aerosols (Toledano et al., 2007b). Therefore it
was necessary to take SSA level 1.5. Mean daily values
(not overpass data) were used as the most reliable values
for this analysis because of the restrictions of the inversion
AERONET algorithm for SZA as mentioned above. The er-
ror of SSA reported by AERONET depends on the values
of AOD(440 nm) and also on aerosol types (DD, BB, etc.),
with higher uncertainty for lower wavelengths (Dubovik et
al., 2002), varying from 0.03 to 0.07.

In spite of this assigned error, it must be emphasized that
the quality of the obtained SSA data-set “(level 1.5)” is not
guaranteed (quality not assured according to AERONET pro-
tocols). In addition, the analysis of the SSA quality with
other methodology is not generally feasible. This is the case
for our study and unfortunately for other reported cases (Pére
et al., 2009). To solve this problem, the work of Arola
et al. (2009) proposed to use model data in combination to
AERONET data in order to get a climatology expressing the
SSA values as monthly-means. Also monthly SSA values
were used in the work of Kazadzis et al. (2009) but using
other methodology based on Brewer global-direct measure-
ments and a radiative transfer model. For the moment, only
AERONET data are available at El Arenosillo station

Figure 5a shows SSA versus AOD, both taken at 440 nm
wavelengths. A first look of this plot indicates that SSA val-
ues range from 0.7 to 1 with a 66% of points between 0.9 and
1. In addition, there is a significant number of points below
0.85 (14%), presenting most of then AOD(440 nm) smaller
than 0.25. The cases with SSA(440 nm) smaller than 0.9 and
AOD(440 nm) smaller than 0.25 represent 29% of all. Our
selected two groups of data with AOD(440 nm)≥ 0.25 ap-
pear as the top-right side, with most of them with SSA values
between 0.9–1 which indicates that they are not absorbent, as
it was expected. The cloud-free data set has a mean value of
SSA(440 nm)= 0.9 and its most frequent value is 0.95 (his-
togram of frequencies not shown). Also it can be seen that
the alpha values are more or less homogeneous distributed
around all the SSA range, not being associated with the ab-
sorbing characteristics.

In Fig. 5b SSA(440 nm) values are plotted versus AI for
the whole data set and the set of alpha smaller than 0.82
together with both sub-groups of AOD(440 nm)≥ 0.25 (red
and green points). It can be seen that there is no correlation
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Fig. 5. (a) Mean day values of SSA at 440 nm “(level 1.5)” as
function of AOD at 440 nm for the El Arenosillo station for the
2004–2008 period and(b) as function of AI, where different sub-
sets of aerosols specified by alpha and AOD(440 nm) values are
represented (see text). “all alpha data” set includes white and other
coloured points.

as it could be expected. Appearing at the left of AI= 0.5
most of the points correspond to moderate-low absorption
around SSA= 0.92 and a non-neglected number of points
show very low SSA values (high absorption) which corre-
spond to AOD(440 nm) lower than 0.25. As before, red
points (polluted) appear as non-absorbing according to AI
but with a mean SSA value of 0.92, thus as moderately ab-
sorbing. Green points or desert dust (DD) have a mean
value of SSA= 0.9 (lower than red points), giving also low-
moderate or non pronounced absorbing characteristics. It
must be emphasized that these same points appeared as ab-
sorbing aerosols according to AI (right side). In conclusion,
AI and SSA values do not show contradictory information
to define absorbing aerosol groups. It is difficult to choose
what experimental values (AI or SSA) are most adequate to
describe absorbing aerosol properties, although the SSA pa-
rameter appears as the most reliable according to Mie theory.

For the OMI bias correction it is necessary to obtain the
SSA at UV wavelengths where no retrieval methodology is

currently available with AERONET data. In order to solve
this issue, we extrapolate from 440 nm to 340 nm assign-
ing the same slope that SSA has between 440 and 670 nm
as a good approach. Figure 6 shows the correlation be-
tween the SSA at 440 nm and at 340 nm. The agreement
is high with a correlation coefficient (R2) of 0.97, being
the values at 340 nm slightly higher than at 440 nm. To il-
lustrate the spectral behaviour of SSA, Fig. 7 depicts the
mean value of SSA “(level 1.5)” for the four aerosol wave-
lengths used in AERONET during the whole OMI analysed
data set in El Arenosillo. Also it is depicted the SSA values
of the whole data-set without desert dust (DD) group and
the SSA of the DD group. As can be seen, the SSA de-
creases for larger wavelength and the contrary happens for
DD aerosols. Slightly lower values have been obtained for
the period 2000–2009, as shown below in Fig. 8a.

The SSA values obtained in El Arenosillo are, in general,
quite lower (more absorbing) than those found in other ar-
eas. Our values are equivalent or lower than those found in
big urban cities as Paris or Mexico D.F., or more polluted ar-
eas as the site of the GSFC (Goddard Space Flight Center) at
Greenbelt near Washington-DC, as it is depicted in Fig. 8b.
The three AERONET sites have a long-record of data as in-
dicated in Fig. 8b for level 1.5 and 2 where the observed dif-
ference are sufficient illustrative to put in discussion the true
validity of “1.5 level” data.

To confirm these non-expected high absorbing values of
SSA in El Arenosillo, we have also analysed the SSA values
for our AERONET station of Palencia in the North of Spain
(41.98◦ N, 4.51◦ W, 750 m a.s.l.). Although the site is located
near a little city of 82 000 inhabitants without industry, very
low values of SSA are not expected. In Fig. 8a the earlier
SSA values in El Arenosillo are depicted together with those
in Palencia for level 1.5 and 2. It can be seen that SSA val-
ues in level 1.5 are lower in Palencia than in El Arenosillo.
It must be noted that level 2 is represented by the features
of desert dust aerosols where SSA increases with the wave-
length, because in both sites only DD intrusions reach values
of AOD(440 nm) as high as 0.4 to reach level 2. Therefore,
this is a non expected result because El Arenosillo is located
in a rural area and although it may have some influence of the
industrial belt of the city of Huelva, this can not reach this
lower SSA values. Observe that GSFC at level 2 has a value
of SSA at 440 nm higher than 0.95 and at UV about 0.98,
thus appearing as a reliable value. On the other hand, the
error of SSA reported by AERONET depends on the values
of AOD(440 nm) and also on aerosol types (DD, BB, etc.),
with higher uncertainty for lower wavelengths (Dubovik et
al., 2002), varying from 0.03 to 0.07.

The above results show the current state of the research
about the values and uncertainties of the SSA parameter. In
spite of these shortcomings, the SSA values “(level 1.5)” will
be used to analyse their relationship with the OMI irradiance
correction.
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Fig. 6. Correlation and fit of SSA at 340 nm and 440 nm.

4.3 Application of corrections for OMI bias –
approaches of SSA constant and SSA variable

The SSA of DD aerosols increase as the wavelengths in-
crease (Dubovik et al., 2002) in contrast with the behaviour
of the SSA for the whole data set (with and without DD
aerosols) which decreases. Because of this opposite spectral
behaviour both sets have the same value of 0.916 for 340 nm,
when the straight line that joins the SSA values at the wave-
lengths of 440 and 670 nm is extrapolated. We must also note
that the spectral behaviour of the red points is very similar to
the spectral behaviour of the whole data set. Therefore, as
first approach a fixed SSA value of 0.916 will be considered
to generate the AAOD= (1 + AOD · SSA) at 340 nm for the
whole data set. In this case, the AAOD variation is exclu-
sively due to AOD changes. As second approach, AAOD val-
ues are derived from average daily values of SSA at 340 nm.
In this second case, the slope of the line between 440 nm and
670 nm was evaluated to get the value of SSA at 340 nm for
each individual spectral data of SSA. Thus, while AAOD val-
ues range from 0 to almost 0.07 for the first approach, they
reach more than the double value (∼0.17) for the second ap-
proach.

The two plots of Fig. 9 show the relationship between
OMI/Brewer ratio for UVER and AAOD at 340 nm obtained
by means of the first approach (top) and the second one (bot-
tom). The fitting has been added to each plot in order to
determine the parameterb of the correction formula for the
two approaches. The valueb = 3.42 was obtained for the
first approach which is near the proposed value of Krotkov
et al. (2005) andb = 1.155 for the second approach taking
SSA(340 nm) variable. Both fits show very poor correla-
tion with coefficient of determinationR2 equal to 0.17 and
0.04, respectively. The constants for the spectral irradiances

 
 

 
 

Figure 7

0.70

0.75

0.80

0.85

0.90

0.95

1.00

300 400 500 600 700 800 900 1000 1100
wavelength(nm)

S
S

A

all data, OMI set (2004-2008)

all data without desert

desert dust

Level 1.5

SSA=0.916

El Arenosillo-AERONET

Figure 7

0.70

0.75

0.80

0.85

0.90

0.95

1.00

300 400 500 600 700 800 900 1000 1100
wavelength(nm)

S
S

A

all data, OMI set (2004-2008)

all data without desert

desert dust

Level 1.5

SSA=0.916

El Arenosillo-AERONET

all data without desert dust

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The mean values of SSA as function of wavelengths (level
1.5) for the period 2004–2008. The SSA spectral mean value when
desert dust data are removed from the total and the spectral SSA for
desert dust aerosol (this behaviour is the same as that given by level
2 SSA).
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Fig. 8. (a) Mean values of the spectral SSA for level 1.5 of El
Arenosillo for the periods 2004–2008 (used with OMI data) and
2000–2009; SSA for desert dust only for the period 2004–2008 and
those of Palencia station as indicated.(b) The same for three rep-
resentative cities (Paris, Mexico D.F. and GSFC at Greenbelt near
Washington-DC) and their corresponding periods of data for level
1.5 and 2.

at 305, 310 and 324 nm were also obtained and given in Ta-
ble 1 (plot are not shown).

Figure 10 shows the correlation between OMI and Brewer
values for UVER before and after the correction using the
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Fig. 9. Ratio of OMI/Brewer UVER data as function of aerosol
absorption optical depth AAOD(440 nm) and the corresponding fits
for b determination(a) first approach based on SSA(340 nm) con-
stant and(b) second approach based on SSA(340 nm) variable.

first approach (top) and the second one (bottom). Table 2
contains all the information of slopes and intercepts values
and statistical parameters for UVER, 305, 310 and 324 nm
wavelengths. The regression analysis without correction
shows positive OMI bias characterized by regression slopes
of 1.18 (UVER), 1.18 (UV 305 nm), and 1.14 (UV 310 nm),
and 1.10 (UV 324 nm), and with coefficients of determina-
tion higher than 0.96. The RMSE statistics (residual error
of the fit) is 7.1% for UVER and between 6% and 8.3% for
spectral wavelengths, being larger for shorter wavelengths in
agreement with the work of Kazadzis et al. (2009). The val-
ues of the MBE (Mean Bias Error) parameters are 13.38%
(UVER), 14.92% (UV at 305 nm), 11.75% (UV at 310 nm)
and 10.30% (UV at 324 nm), indicating the notable agree-
ment between satellite and ground-based irradiance data in
our area, as has been reported previously (Antón et al., 2010).

The correction of the OMI irradiance data (Eqs. 3 and 4)
reduces significantly the bias with respect to Brewer mea-
surements. Table 2 shows that MBE for UVER decreases
to 11.65% (SSA variable approach) and 8.4% (SSA constant
approach), which represents a relative decrease of 13% and
37% with respect to the values without correction. Simi-
lar improvement was obtained for the three spectral wave-
lengths. The smallest bias corresponds to wavelengths at
310 nm (6.9%) and 324 nm (6.3%) for the SSA constant ap-
proach, representing a relative reduction of OMI bias of 32%
and 38%, respectively.

Table 1. Results of linear regression analysis between OMI/Brewer
ratio of UV products and AAOD at 340 nm for the two approaches:
SSA variable and SSA constant. The parameters are the following:
the slope of the regression (b), theY intercept, and the correlation
coefficient (R2).

SSA variable b (Slope) Y intercept R2

UVER 1.16 1.14 0.05
305 1.07 1.16 0.03
310 1.09 1.12 0.04
324 1.01 1.10 0.04

SSA constant b (Slope) Y intercept R2

UVER 3.42 1.10 0.17
305 2.44 1.12 0.13
310 3.28 1.08 0.15
324 2.67 1.17 0.13

As can be seen a better improvement has been obtained for
the SSA constant approach which may be surprising in prin-
ciple, but not taking into account the above discussion about
SSA values. A fixed value of SSA equal to 0.916 at UV range
is more reliable for the whole data set that the variable val-
ues of SSA “(level 1.5)”. As it was discussed above, AAOD
values obtained for SSA variable appear as a whole as very
absorbing, reaching a value of 0.17. The correlation between
these two sets of AAOD values has been evaluated show-
ing a low correlation, smaller than 0.3 (not shown). Thus,
the constant slopeb in the SSA variable approach decreases
considerably, reducing the posterior effectiveness of the cor-
rection (see thatb = 1.155 is near 1). When values greater
than 0.08 are removed, a value ofb = 1.49 is obtained but
the improvement is not significant.

Otherwise, if a value ofb = 3 is applied (Krotkov et al.,
2005) the OMI bias of UVER decreases to 9.4% (324 nm
falls to 4.5%) but the application of this value is not justified.
Additionally, it is worth noting that for the second approach
using SSA at 440 nm instead of at 340 nm gives the same re-
sults. Also, the performance of the correction has been eval-
uated in the case of using a constant value of SSA equal to
0.95, which may be a reasonable value for the whole data set
assuming less absorption, as in the area of GSFC (where the
interpolated value goes to 0.95 at UV range). In this case, the
slopeb increases up about 5 but the AAOD values decrease
in such a way that the correction factor, and hence the correc-
tion, are substantially modified. Thus, these other explored
possibilities or approaches do not improve the previous one.

Figure 11 depicts OMI bias as function of AOD(340 nm)
before (same as earlier Fig. 3a) and after the application of
the two corrections. Now no dependence is observed with
horizontal slopes for the regression lines after the correction.
Tanskanen et al. (2007) showed that the OMI-derived daily
erythemal doses (uncorrected for absorbing aerosols) have
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Table 2. Results of linear regression analysis between OMI and Brewer UV products without correction and the correction for the two
approaches: SSA variable and SSA constant, and the statistical parameters of relative differences. The parameters are the following: the
slope of the regression, the standard error (SE) of the slope, theY intercept, the SE of theY intercept, the correlation coefficient (R2), the
root mean square errors (RMSE), the number of data (N ), the mean bias error (MBE), the standard error (SE) of the MBE, the mean absolute
bias error (MABE), and the SE of the MABE.

WITHOUT CORRECTION

Slope SE (Slope) Y intercept SE (Y intercept) R2 RMSE (%)
(mW/m2) (mW/m2)

UVER 1.18 0.01 −1.89 1.08 0.98 7.16
305 1.18 0.01 0.10 0.27 0.98 8.35
310 1.14 0.01 −0.07 0.55 0.97 7.42
324 1.10 0.01 5.37 2.85 0.96 6.56

N MBE (%) SE (MBE) (%) MABE (%) SE (MABE) (%)

UVER 583 13.38 0.26 13.48 0.25
305 583 14.92 0.28 15.05 0.27
310 583 11.75 0.27 11.94 0.25
324 583 10.30 0.24 10.50 0.22

CORRECTION WITH SSA VARIABLE (b = 1.155)

SSA variable Slope SE (Slope) Y intercept SE (Y intercept) R2 RMSE (%)
(mW/m2) (mW/m2)

UVER 1.16 0.01 −1.69 1.01 0.98 6.99
305 1.16 0.01 0.12 0.26 0.98 8.23
310 1.12 0.01 0.01 0.52 0.98 7.26
324 1.08 0.01 5.50 2.70 0.96 6.39

SSA variable N MBE (%) SE (MBE) (%) MABE (%) SE (MABE) (%)

UVER 583 11.65 0.26 11.85 0.24
305 583 13.34 0.29 13.58 0.27
310 583 10.08 0.27 10.44 0.24
324 583 8.73 0.24 9.08 0.21

CORRECTION WITH SSA CONSTANT (b = 3.42)

SSA constant Slope SE (Slope)Y intercept SE (Y intercept) R2 RMSE (%)
(mW/m2) (mW/m2)

UVER 1.11 0.01 −0.89 0.94 0.98 6.62
305 1.11 0.01 0.23 0.24 0.98 7.78
310 1.07 0.01 0.36 0.48 0.98 6.86
324 1.04 0.01 7.79 2.52 0.96 6.10

SSA constant N MBE (%) SE (MBE) (%) MABE (%) SE (MABE) (%)

UVER 583 8.40 0.25 8.91 0.22
305 583 10.01 0.28 10.50 0.25
310 583 6.90 0.26 7.71 0.21
324 583 6.30 0.23 6.98 0.19

a median overestimation of 0–10% for regions with mod-
est loadings of absorbing aerosols. The OMI biases against
reference Brewer data in El Arenosillo are inside this range
when the correction for absorbing aerosols is applied (MBE
values between 6–10%). Therefore, our results can be con-
sidered as satisfactory, indicating the level of accuracy that

may be reached by the OMI algorithm at the present status of
research. Otherwise, ongoing investigations must be accom-
plished to better assess SSA values and hence to improve the
estimated OMI values.
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Fig. 10. Correlations and fits of OMI and Brewer irradiances with-
out correction and for the two corrections:(a) first approach bases
on SSA constant and(b) second approach based on SSA variable.

5 Conclusions

This work focuses on the influence of aerosols over the
comparison between OMI and Brewer UV products at El
Arenosillo station (South of Spain) for the period Octo-
ber 2004–December 2008. Under cloud-free conditions,
our ground-based measurements overestimate the OMI data,
around 13% for UVER and ranging from 10% to 15% for
the spectral wavelengths, in agreement with other locations.
When the aerosol corrections are applied, we find an OMI
bias ranging from 6–10% for the SSA constant approach
(from 13.4% to 8.4% for the UVER), which represents a
relative reduction between 30% and 40% with respect to
OMI bias without aerosol correction. For the SSA constant
approach, the variation of AAOD depends only on AOD
features. Less effective reduction is obtained when using
available mean daily SSA values (form 13.4% to 11.6% for
UVER), which in principle would appear as more reliable
approach for aerosol correction.
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Fig. 11. Relative difference between OMI for UVER data as func-
tion of aerosol optical depth without correction when the two cor-
rections are applied(a) for the first correction approach with SSA
constant;(b) for the second correction approach with SSA variable.
The number of data (N ) is specified inside the plot.

This inconsistent result may be related to the uncertain re-
liability of AERONET SSA level 1.5 of our data. Mainly
due to the difficulty to determine absorbing aerosols in many
sites a detailed analysis in our area of study has been per-
formed, based on the available information of AOD-alpha
parameters, more frequently available than AI and SSA. The
analysis allows the selection of some defined aerosol groups,
as polluted or desert dust types. However, some inconsis-
tency related to this selection appeared. For instance, pol-
luted aerosols based on AOD-alpha values appear as non-
absorbent according to AI values or moderate absorbing ac-
cording to SSA values and also a few percent of data shows
low values of SSA (very absorbing) in contrast with AI val-
ues lower than 0.5 (non-absorbing). Only desert dust data are
in agreement for AOD-alpha, AI and SSA data. Most of the
data of low AOD(440 nm) values appear as non-absorbing
according to AI with moderate SSA values, when the applied
corrections work.

Proposed corrections for aerosol effect showed a relative
high efficiency for reducing the OMI bias depending signifi-
cantly on the slope of OMI/Brewer ratio over the absorption
aerosol optical depth. Our results reflect the level of accuracy
that may be reached in this type of comparison at present
which may be considered as satisfactory. Nevertheless, im-
provements must be accomplished to determine reliable ab-
sorbing aerosol properties, which appear as the limiting fac-
tor to improve OMI bias.
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