14,401 research outputs found

    Optical conductivity near finite-wavelength quantum criticality

    Full text link
    We study the optical conductivity sigma(Omega) of an electron system near a quantum-critical point with finite-wavelength ordering. sigma(Omega) vanishes in clean Galilean-invariant systems, unless electrons are coupled to dynamical collective modes, which dissipate the current. This coupling introduces a nonuniversal energy scale. Depending on the parameters of each specific system, a variety of responses arise near criticality: scaling peaks at a temperature- and doping-dependent frequency, peaks at a fixed frequency, or no peaks to be associated with criticality. Therefore the lack of scaling in the far-infrared conductivity in cuprates does not necessarily call for new concepts of quantum criticality.Comment: 4 pages, 4 figures; version as publishe

    Bayesian optimization approach to input shaper design for flexible beam vibration suppression

    Get PDF
    This paper tackles the problem of suppressing vibrations of a flexible beam mounted on a mobile robot for inspection purposes. The adopted approach is an input shaper design along with Bayesian optimization. The latter methodology is employed to find out the optimal shaping parameter, taking into account non-ideal behaviors as controller hysteresis and time delays. Experimental results bolster the performance of the proposed approach

    Weak-coupling phase diagrams of bond-aligned and diagonal doped Hubbard ladders

    Full text link
    We study, using a perturbative renormalization group technique, the phase diagrams of bond-aligned and diagonal Hubbard ladders defined as sections of a square lattice with nearest-neighbor and next-nearest-neighbor hopping. We find that for not too large hole doping and small next-nearest-neighbor hopping the bond-aligned systems exhibit a fully spin-gapped phase while the diagonal systems remain gapless. Increasing the next-nearest-neighbor hopping typically leads to a decrease of the gap in the bond-aligned ladders, and to a transition into a gapped phase in the diagonal ladders. Embedding the ladders in an antiferromagnetic environment can lead to a reduction in the extent of the gapped phases. These findings suggest a relation between the orientation of hole-rich stripes and superconductivity as observed in LSCO.Comment: Published version. The set of RG equations in the presence of magnetization was corrected and two figures were replace

    Electrodynamics near the Metal-to-Insulator Transition in V3O5

    Full text link
    The electrodynamics near the metal-to-insulator transitions (MIT) induced, in V3O5 single crystals, by both temperature (T) and pressure (P) has been studied by infrared spectroscopy. The T- and P-dependence of the optical conductivity may be explained within a polaronic scenario. The insulating phase at ambient T and P corresponds to strongly localized small polarons. Meanwhile the T-induced metallic phase at ambient pressure is related to a liquid of polarons showing incoherent dc transport, in the P-induced metallic phase at room T strongly localized polarons coexist with partially delocalized ones. The electronic spectral weight is almost recovered, in both the T and P induced metallization processes, on an energy scale of 1 eV, thus supporting the key-role of electron-lattice interaction in the V3O5 metal-to-insulator transition.Comment: 7 pages, 5 figure

    Modelling and control of a variable-length flexible beam on inspection ground robot

    Get PDF
    Stabilising an inverted pendulum on a cart is a well-known control problem. This paper proposes the mechanical and control design for solving the oscillation problem of a variable-length flexible beam mounted on a mobile robot. The system under consideration is the robot PovRob, used at the European Organization for Nuclear Research (CERN) for visual and remote inspection tasks of particle accelerators. The flexible beam mounted on the robot houses cameras and sensors. The innovative aspect of the approach concerns the use of actuated masses mounted at the end of the rod, which induces an impulsive moment due to their inertia and angular acceleration. The modelling of the flexible rod has been suitably simplified in a lumped-parameter system, with dynamic parameters related to the rod’s flexibility. A linearisation of the dynamic model allows a linear-quadratic control to stabilise the system. Experimental results support the identification and the validation of the dynamic model, while simulation results evaluate the performances of the designed control law

    Universal observation of multiple order parameters in cuprate superconductors

    Full text link
    The temperature dependence of the London penetration depth \lambda was measured for an untwined single crystal of YBa_2Cu_3O_{7-\delta} along the three principal crystallographic directions (a, b, and c). Both in-plane components (\lambda_a and \lambda_b) show an inflection point in their temperature dependence which is absent in the component along the c-direction (\lambda_c). The data provide convincing evidence that the in-plane superconducting order parameter is a mixture of s+d-wave symmetry whereas it is exclusively s-wave along the c-direction. In conjunction with previous results it is concluded that coupled s+d-order parameters are universal and intrinsic to cuprate superconductors.Comment: 5 pages, 3 figure

    Conservation laws and bosonization in integrable Luttinger liquids

    Full text link
    We examine and explain the Luttinger-liquid character of models solvable by the Bethe ansatz by introducing a suitable bosonic operator algebra. In the case of the Hubbard chain, this involves two bosonic algebras which apply to {\it all} values of UU, electronic density, and magnetization. Only at zero magnetization does this lead to the usual charge - spin separation. We show that our ``pseudoparticle'' operator approach clarifies, unifies, and extends several recent results, including the existence of independent right and left equations of motion and the concept of ``pseudoparticle'' (also known as ``Bethe quasiparticle'').Comment: 12 pages, RevTeX, preprint CSI

    Visual control through narrow passages for an omnidirectional wheeled robot

    Get PDF
    Robotic systems are gradually replacing human intervention in dangerous facilities to improve human safety and prevent risky situations. In this domain, our work addresses the problem of autonomous crossing narrow passages in a semi-structured (i.e., partially-known) environment. In particular, we focus on the CERN’s Super Proton Synchrotron particle accelerator, where a mobile robot platform is equipped with a lightweight arm to perform measurements, inspection, and maintenance operations. The proposed approach leverages an image-based visual servoing strategy that exploits computer vision to detect and track known geometries defining narrow passage gates. The effectiveness of the proposed approach has been demonstrated in a realistic mock-up

    Ward identity and optical-conductivity sum rule in the d-density wave state

    Get PDF
    We consider the role of the Ward identity in dealing with the transport properties of an interacting system forming a d-wave modulated charge-density wave or staggered flux phase. In particular, we address this issue from the point of view of the restricted optical-conductivity sum rule. Our aim is to provide a controlled approximation for the current-current correlation function which allows us also to determine analytically the corresponding sum rule. By analyzing the role of the vertex functions in both the microscopic interacting model and in the effective mean-field Hamiltonian, we propose a non-standard low-energy sum-rule for this system. We also discuss the possible applicability of these results for the description of cuprate superconductors in the pseudogap regime.Comment: Revised version, accepted for publication in Phys. Rev.

    Anomalous optical absorption in overdoped cuprates near the charge-ordering instability

    Full text link
    We propose an interpretation for the hump observed in the optical conductivity at or below a few hundreds of cm−1^{-1}, in overdoped cuprates like the electron-doped Nd_{2-x}Ce_xCuO_{4-y} at x\gtrsim 0.15 and the hole-doped Bi_2Sr_2CuO_6 and La_{2-x}Sr_xCuO_4. This interpretation is based on the direct excitation of charge collective modes, which become nearly critical in the proximity to a charge-ordering instability. The nearly critical character of these excitations entails a peculiar temperature dependence and a pseudo-scaling form of the lineshapes, which are in agreement with the experimental data.Comment: 5 pages, 3 figure
    • …
    corecore