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Abstract— Stabilising an inverted pendulum on a cart is a
well-known control problem. This paper proposes the mechan-
ical and control design for solving the oscillation problem of
a variable-length flexible beam mounted on a mobile robot.
The system under consideration is the robot PovRob, used at
the European Organization for Nuclear Research (CERN) for
visual and remote inspection tasks of particle accelerators.
The flexible beam mounted on the robot houses cameras
and sensors. The innovative aspect of the approach concerns
the use of actuated masses mounted at the end of the rod,
which induces an impulsive moment due to their inertia and
angular acceleration. The modelling of the flexible rod has been
suitably simplified in a lumped-parameter system, with dynamic
parameters related to the rod’s flexibility. A linearisation of the
dynamic model allows a linear-quadratic control to stabilise
the system. Experimental results support the identification and
the validation of the dynamic model, while simulation results
evaluate the performances of the designed control law.

I. INTRODUCTION

At the European Organization for Nuclear Research
(CERN), accelerators, facilities, and laboratories require reg-
ular maintenance and supervision. The long distances to be
covered, the large number of objects to be monitored, and
the need to limit human exposure to radioactivity make the
mobile robot the most appropriate solution for rapid and
efficient exploration of the surrounding environment. Ground
robots exploring accelerators must first of all be small in size.
However, at the same time, they must have camera systems
of various heights to be robust to any inspection scenario.
These kinds of requirements are common to several robot
applications in hostile environments. Just think of robots
that need to perform inspection operations following natural
disasters, building collapses, life recovery operations, or even
space exploration. These are environments with numerous
obstacles, like CERN’s ones, where an efficient and precise
vision system plays a key role. These characteristics have led
to the design and assembly of an omnidirectional robot with
a peculiar vision system (see Fig. 1). Its main feature is the
retractable system housed inside the robot’s frame, capable of
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Fig. 1. PovRob, the employed mobile robot with flexible beam at CERN.

being converted into a variable-length rod that emerges from
the robot’s body. A clasp locker system inspires the rod: two
zips are mechanically pushed against each other and combine
to form the unique body of the rod. The mobile robot and
the rod combination define a mechanical system: a flexible
inverted pendulum with a tip mass on a cart.

Flexible mechanical systems have attracted the scientific
community’s attention due to their lightweight, low cost
compared to rigid structures, and the possibility of providing
space-saving solutions in mechanical design. Controlling and
modelling the vibration of flexible structures mounted on a
cart has been extensively explored in the literature.

Concerning the modelling part, the existing approaches
can be classified into two categories: partial differential
equation (PDE) models and lumped-parameters models.
Modelling through the Euler-Lagrange technique is proposed
in [1], where the vibration dynamics is modelled through a
4-th order differential equation in space and time. In [2], the
modelling of an elastic inverse pendulum through the Hamil-
tonian principle and variational methods was proposed by
coupling PDEs and ordinary differential equations (ODEs).
The equations of motion of a beam-mass-cart system were
derived in [3] through the Euler-Bernoulli equations, and
the coupling dynamics were solved through unconstrained
modal analysis. In [4], Hamiltonian modelling of the three
subsystems is carried out independently, and the whole
dynamics is found to be the sum of the three contributions.

On the other hand, regarding the control aspect, most of
the works address the stabilisation of an inverted pendulum at



the vertical position by using the mobile base to compensate
for vibration effects dynamically. Many researchers have
proposed feedback control methods for stabilising flexible
inverted pendulums based on the system models. Vibration
suppression of an Euler-Bernoulli beam system by adaptive
control technique is presented in [5]. In [6], a flexible
inverted pendulum based on a PDE model is stabilised
through the combination of a boundary control method and
a sliding-mode control. A positioning system for a flexible
beam with robust feedback and a preshaping controller has
been designed in [7]. In [8], a controller based on a sim-
ulated model with genetic algorithms is synthesised, while
a vibration suppression method for flexible pendulum on a
cart based on zero vibration derivative (ZVD) input shaper
is developed in [9]. In [10], the input shaping approach is
instead combined with a Bayesian optimisation for the choice
of optimal shaping parameters. Among the linear control
approaches, it is worth mentioningd [11], where a control
system based on a proportional controller and a low pass
filter for a flexible inverted pendulum is designed. Finally,
the control of a flexible pendulum with both linear-quadratic
regulator (LQR) and fuzzy control was investigated in [12].

Therefore, most control algorithms for stabilising an in-
verted pendulum (flexible or non-flexible) are based on the
generation of a horizontal force exerted by a cart. However,
the need to have large horizontal movements and the knowl-
edge of the dynamic coupling between the cart’s movement
and the oscillations involving the pendulum suggests using
an alternative solution. This consists of actuated rotational
masses, namely momentum wheels, to be placed at the tip
of the rod. In [13], [14], [15], the mechanical design and
control of an inverted pendulum is presented. The stabili-
sation is achieved by the moment exchange generated by
the controlled rotation of a rotational part attached to the
upper end of the pendulum. Such exchange generates a
moment that can be used to stabilise the inverted pendulum
or dampen out the motion of a stable pendulum. Due to the
moment exchange, the pendulum does not need a moving
base or cart for stabilisation, allowing a much simpler control
design. The control of the resulting system can be performed
following different approaches: a linear controller as in [13],
based on the linearised version of the model around its
unstable equilibrium point; nonlinear controllers as in [14];
or the combinations of the two as in [15]. One-dimensional
inverse pendulum stabilisation is not the only application of
momentum wheels. In [16], momentum wheels mounted on
three faces of a cube rotate at high angular velocities and
then brake suddenly, causing it to jump up. However, in the
literature, all momentum wheels are consistently applied to
rigid pendulums with fixed lengths.

This paper’s objective aims to reduce the oscillations to
which the rod is subjected when the mobile robot moves.
The accelerations of the mobile base, the irregularity of the
ground on which it operates, and the lack of suspension cause
vibrations at the end of the rod, resulting in poor sensor
readings. The main contribution of this paper is to address
this problem through the use of moment wheels mounted at

the end of the rod, to be controlled based on the behaviour of
the oscillations. Concerning the existing literature reviewed
above, this paper tackles the problem of having moment
wheels on a variable-length flexible beam. A dynamic model
using a lumped-parameters approach has been adopted, with
dynamic parameters related to the flexibility of the beam. The
dynamic model validation has been carried out on the real
platform. In the end, a controller for stabilising the system at
the upright vertical position has been designed and simulated.

The article is organised as follows: in Section II, the
robotic architecture and the compensation system will be
presented. Then, the dynamic model of the system and the
control law for damping oscillations will be proposed. In
Section III, experimental results related to the identification
and validation of the dynamic model, and simulation results
related to the control will be presented. Section IV will
present the conclusions of the work and suggest future
research directions.

II. MATERIALS AND METHODS

A. Robotic system

PovRob is a ground robot designed at CERN. The robot
consists of an omnidirectional robotic platform and a sensory
system mounted on a flexible rod. Its small size (520 x 695 x
219 mm) allows the robot to pass through the narrow gaps
separating underground tunnel sections and underneath the
accelerators’ beam lines. It is equipped with driven Mecanum
wheels with a diameter of 0.2032 m, without suspension.
The central body of the robot is made of a steel frame and
houses all the electronic components to control and power
the actuators and sensors. Maxon EPOS2 controllers drive
the motor wheels with a frequency of 150 Hz, while the
overall control system runs on Ubuntu Linux. Robotic arms
can also be mounted on the platform.

The flexible rod is a Serapid Rigibelt. It is made of a
non-magnetic material and is suitable for working in a high
magnetic field. The vibration of the rod is dominant in the

TABLE I
COMPENSATION SYSTEM SETUP

Equipment Technical data Main properties

60 mm diameter,

Motor Maxon 1 hiece 150 W,

Ec 60 flat

My max = 401 mN m
Wmax = 3480 rpm

24V, 0.350g
Driver Maxon T.5A, 24V, Inner controller (PID
EPOS4 70/15 hall sensor on velocity and torque)
D =0.123m,
d=0.14m Optimal mass and
(:;(I) lllleoe‘i/) e = 0.008 m, _dimensions buF
m = 0.127 kg, difficult to machine
Stainless steel
D =0.123m, Precise machinin,
Wheel e = 0.008m, less vibrations &
(Full) m = 0.2578 kg, but hi
Aluminium ut higher mass

IMU Varisense
VMU931

Speed resolution
up to 2000 dps




Fig. 2. Setup with full wheel cylinder design.

horizontal direction. A pan-tilt camera system is mounted
on the top of the rod. Two reaction wheels are mounted in
a perpendicular configuration to dampen oscillations in both
directions. However, in the following, only the horizontal
oscillation is considered. The motor chosen to drive the
reaction wheels is a Maxon EC60 flat, while the driver is
an EPOS4 70/15 manufactured by the same company. The
choice of the motor is linked to its characteristics in terms
of weight, size, and performance. To measure the vibrations,
a Varisense® VMU931 IMU is placed on top of the beam.
The IMU has a built-in accelerometer, a gyroscope, and a
magnetometer.

The choice of the wheel, on the other hand, deserves
a deeper analysis. In order to minimise the mass of the
wheel, after fixing its inertia parameter, the other tech-
nical parameters (the diameter D, the internal diameter
d, the thickness e, the mass m, and the material) were
obtained employing an optimisation algorithm using the
CasADi MATLAB® toolbox. The resulting design is that of
a stainless steel hollow cylinder. However, constructing the
wheel suggested adopting an alternative solution consisting
of a solid aluminium wheel. Although not obtained through
the optimisation algorithm, the dimensional parameters are
determined to obtain the same fixed inertia value. The total
mass of the compensation system (motor, wheels, driver,
etc.) is equal to 0.9097 kg. The technical data and the
main characteristics of the compensation system mounted
at the end of the flexible rod are shown in Tab. I, while the
experimental setup is depicted in Fig. 2.

B. Dynamic model

Consider a flexible beam (see Fig. 3) of length L >
0, section Ay >, density p > 0, and bending stiffness
ET > 0 with a mass M > 0 attached to its upper free-
end. The computation of the equations of motion of the
system according to the Euler-Bernoulli approach starts from
the evaluation of the potential energy V' (¢) € R and kinetic
energy T'(t) € R of the system

1 1 [t
T(t):iM(zf+i(z)§)+§/O pAgi?dz, (1)
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Fig. 3. Flexible beam with end mass M.
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Fig. 4. System with lumped-parameter approach.
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with z(t), 2(t) € R the horizontal and vertical coordinates
of the position of a generic point of the beam, respectively,
and with z.(t) € R the vertical position of the tip mass M.
The system of equations turns out to be a system of 4-th
order PDEs in space and time.

The problem with adopting this model is the need to know
the deformation of the rod in real-time. However, the rod
has a continuously variable length in the addressed case.
Therefore, the correlation between horizontal and vertical
positions should be calculated for every possible beam
height. Although a discretization of the possible lengths
of the rod can be made, this approach would require an
enormous amount of data and time. Experimental observa-
tions have shown that rod deformation is not so large. The
chosen compensation range is set to approximately =+2°,
corresponding to a deviation of the tip mass from the vertical
position of 55.8 mm when the beam is fully extended.
These considerations motivate the choice of an alternative
modelling approach based on the lumped-parameter method.
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Following this last, a flexible rod can be modelled as a
set of rigid bodies coupled through springs and dampers
arranged in series (see Fig. 4). In this way, the spatial
differential part of the dynamic model is removed. The
system was then modelled as an inverted rigid pendulum,
connected to the cart by a spring-damper system, where the
spring stiffness values are related to the deformation of the
flexible rod. For a single spring and damper, the kinetic and
potential energy equations of a beam system are

1 ) ) 1. ) 1 .
T(t) = 5M(a:i + 23+ §m(x§—|—z§) + 5(1“) +1,)0%, (3)

1
V(t) = §k92 —Mg(L —z.) —mg(l, — z,), (4

with # € R the pendulum angle. The kinetic energy of the
beam (last term of (1)) is now simplified as the kinetic energy
of a rod of mass m > 0 and inertia I, > 0, with a centre of
mass in x,, 2z, € R, to be added to the kinetic energy of the
tip element, with mass M and inertia I, > 0 (Fig. 4). Due
to the decomposition of the flexible rod into the combination
of rigid and flexible elements, the potential energy is now
the sum of the spring’s stiffness £ > 0 and a contribution
related to the inverse pendulum’s position.

With reference to [1], in order to find the relation between
the horizontal and vertical position of a point of the beam
subjected to a deflection, the resolution of the following
differential equation is needed

d?z\’ dz

where 0 > 0 being a suitable constant related to the flexibility
of the rod. The homogeneous solution of (5) is

x(z) = Ce’, (6)

where v = (26)'/3. In order to meet the boundary conditions
2(0) = 0 and z(z) = ., the definition of C' = x./e?* is
obtained. Therefore, the corresponding relationship between
the position x and position z, which applies to all cases
where the length of the beam varies, is

z(z) =

By making an analogy between the potential energy of the
beam and the potential energy of an angular spring, the
choice of the stiffness can be retrieved

1 e (d2r\® 1
5EI/O <d22) dz = §k92 = §(LO)* ~ 622 (8)
Then, it is easy to show how k = 26 L2. The stiffness value
of the spring is then related to the deformation of the rod
0 and to its length L. Figure 5 shows how the flexibility
approximation looks like for 6 = 20.

Coming back to (3), this can be rewritten as

Le vz, 7

eVze

1 . 1. .
T(t) = 5(ML2 +ml2 + Ly + I,)0° = ilquZ, )
The corresponding Lagrangian L(t) = T'(t) — V (¢) is

1

o 1
I.,0% — §k92 + g(M L+ ml,)(1 — cos(f)), (10)
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Fig. 5. Small curvature approach: in blue the case without flexibility; in
red the angular spring approximation with §=20.

while the Lagrangian equation associated to (10) can be
derived as

8oL oL .
a%*%*Mw*baa (11)
N - k—g(ML 1
iy gy Fo oML+ miy) sin(f) = —M,,, (12)
Ieq Ieq Ieq

where M,, € R is the input torque of the reaction wheel.
From the analysis of the exchange of momentum between
the wheel and the beam, it results to be

M, = I,(0 + &), (13)

where & € R is the angular acceleration of the reaction
wheel. To simplify the analysis and design of the control
algorithm, a linearised model of the inverted pendulum
around the equilibrium state relative to the rod’s vertical
position can be derived by assuming small perturbation of 6.
The following linear model is thus obtained

b k—g(ML+mly,) 1

0+ —06 0= —DM,.
+—0+ T T,

€q

(14)

Neglecting the non-linear terms of the model can be consid-
ered admissible for the case under consideration, given the
relatively small oscillations to which the system is subjected.
Model validation will confirm such an assumption. The
system in (14) has a structure similar to an under-damped
2 — wg < 0) harmonic oscillator

é+2)\é+w(2)0:fexta ()\ZCWO)

Therefore, an identification of the parameters A (¢ is the
damping ratio) and wy (the under-damped natural frequency)
for a freely oscillating system (f.,+ = 0) can be performed.
The homogeneous solution of (15) is

5)

0(t) = O~ cos(wit — ¢1), (16)
0(t) = Qe cos(wit — d1 — ¢p2), (17
0(t) = Ae™ cos(wit — 1 — 2¢2), (18)
w1 = /wE — A2 =wpy/1 - (2, (19)

with ©,Q, A € R some constants. While the pseudo-
frequency w; can be extracted from the spectral analysis of



the angular velocity, the parameter A can be deduced by the
least squares method by solving

log (9(15 =0)) 1 0
log (0(t = At)) 1 At <log}(\A)> Q0
log (H(t: nAt)) 1 nAt
The equivalence between (14) and (15) is shown below

k — g(ML+mly)

2 _
Wo = qu ) (21)
b
20 = —. 22
T 22)

Knowing these parameters is required for the control.

C. Control

The linearised system (14) is the starting point for the
control law that will be derived in the following. It can be
rewritten in the form of a linear state-space model @(t) =
Ax(t) + Bu(t), as follows

()= (s ) () <I(1J> u), @3

where z = [9 Q]T € R?*! is the state vector of the
system and u(t) = M,(t) is the control input. The linear
controller adopted is an LQR. Although a proportional-
integral-derivative (PID) controller is a good choice for
its versatility and easy implementation, the LQR controller
was chosen because it allows determining a suitable state-
feedback gain K € R'*2 to minimise the following cost
function

J(u)—/Oooﬂc(t)TQx(t)+u(t)TRu(t)dt, (24)

with Q € R2?*?2 a positive semi-definite matrix and R €
RIX1 3 positive definite matrix. Thus, such a controller
makes it possible to minimise the control input u(t) € R
while stabilising the system in z = 0. The matrices () and
R must be chosen so that the pendulum stabilises as quickly
as possible but without too high input torque u(t). Indeed,
an high input torque results in an high inertia of the wheel,
or in a strong angular acceleration. The design of the control
loop (see Fig. 6) is divided into multiple stages.

1) Open loop torque control. This block allows for proper
control of the actuation system. The computation of the
real torque to be sent to the motor, starting from the output
of the controller, is

u = (us + cppée + cqpsign(d))ca, (25)

where u; € R is the desired output torque, c,¢,cs¢ > 0
are the viscous and static friction coefficients respectively,
and cg > 0 is the driver coefficient torque.

2) Plant. Model (14) is adopted. An identification of the
dynamic parameters, as seen in the previous section, was
performed.

Il
£

Tref =0 LQR u
CONTROL ’

OPEN LOOP u Y
TORQUE CONTROL PLANT v

4

Z LUENBERGER
OBSERVER

)

Control scheme.

Fig. 6.

Acceleration in x [m/s?]

40 ! ! | | | | !
0 0.5 1 1.5 2 25 3 3.5 4
Time [s]

Fig. 7. Red: reconstruction from least square; blue: & with FIR filtering;
green dash line: & without filtering.

3) Luenberger observer. It provides an estimate & of the
internal state of the system, from measurements of the
input » and output y of the real system

t=Ai+Bu—1L,(y—Ci). (26)

where L, € R?*? is the Luenberger observer gain matrix.
4) LOR control. A simple LQR controller is finally applied,
the state-feedback control input is defined as u = KC'zZ.

ITI. RESULTS AND DISCUSSION
A. Identification and model validation

The process of model identification consists in finding the
dynamic parameters of the system, namely A, wg, and I,.
This work was then carried out for 10 different lengths of
the rod in order to interpolate and obtain the value of the
dynamic parameters as the length L of the rod varies. The
experimental protocol involves the manual modification of
the initial position of the rod, which is subsequently released,
thus allowing it to oscillate freely. The calculation of the
dynamic parameters has been carried out by spectral analysis
and least squares method as seen previously, thus using (21)
and (22). The inertial sensor mounted on the rod detects the
oscillations in real time; specifically, the acceleration along
the direction of oscillation taken into account is measured.
Figure 7 shows, for example, the comparison between the
horizontal acceleration values and the reconstruction ob-
tained through the least-squares method of the acceleration
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Fig. 9. Red: LQR stabilisation; Blue: Free oscillation; LQR regulator
K = [—3.3262 — 4.9481] and I, = 5.5- 10" % kg m?

of a harmonic oscillator, for a length L = 1.42 m. The
rod is allowed to oscillate freely from an initial condition
0o = 1.57° and , = 0. A finite impulse response (FIR) filter
is applied to the measured signal to smooth the oscillations
and better appreciate the trend. The figure highlights the
goodness of the performed linear approximation and the
adherence of the model of the real system with that of
a harmonic oscillator. Figure 8 shows the results of the
second type of experiment used for validation purposes. The
system starts from a null initial condition and oscillates
through the momentum wheel. The length L of the rod is
set to 0.71 m. The control input imposed on the wheel is
a sinusoidal trajectory u(t) = 0.65sin(0.0628¢). Observing
the system’s angular velocity graph, it is possible to notice
a good coincidence of the model with the simulation.

B. Control

Given the remarkable coincidence of the model with the
real system, simulations in MATLAB® were carried out to
verify the performance of the control. The simulation results
follow: a rod height of 1.42 m is assigned, with a tip mass M
of 0.9097 kg. The inertia I,,, of the momentum wheel was set
equal to 5.5 - 10~*kgm?. The system was assumed to start
from an initial angular position equal to 2°, with zero initial
velocity. Figure 9 shows the trend of the state variable 6 over
time. The control can stabilise the system in about 3.5 s,

LQR Control: input torque
T T T T T

. . . . . . I . . J
0 1 2 3 4 5 6 7 8 9 10
Time [s
Angular acceleration of reaction wheel
T T T T T T

. . . .
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Angular speed of reaction wheel
T T T T T

rpm;
a
=3
3

Time s

Fig. 10. MATLAB® simulation with LQR regulator K = [—3.3262 —
4.9481] and I,, = 5.5 - 10~* kgm?.

which reduces the settling time by about 65% compared to
about 10s for the uncontrolled system. Figure 10 shows the
trend of the control torque and the acceleration and angular
speed of the reaction wheel. The control torque is about
310 - 10~3 Nm, so below the limit value of 401 - 10~2 Nm,
just as the maximum speed is 885rpm, so lower than the
limit value of 3480 rpm. The figures reveal results even above
expectations and significantly within the torque and speed
limits. Therefore, it is even possible to choose a smaller
motor with lower performances, making the compensation
system even lighter.

I'V. CONCLUSION AND FURTHER IMPROVEMENTS

This paper proposes the modelling and control of a com-
plex robotic system. The identification process leads to sat-
isfactory results, confirming the correctness of the modelling
of the flexible rod with variable length and confirming the
admissibility of the simplifying assumptions. The modelling
also allows for a practical and straightforward to implement
control system. Besides solving the specific application case,
the results obtained can be extended to any system equipped
with a flexible rod. In addition, the proposed solution can be
more efficient and easier to implement than an oscillation
control based on cart actuation. Indeed, it is possible to
decouple the dynamics of the two subsystems and entrust the
reaction wheels with the task of damping the oscillations.

The present work can be further extended to include
closed-loop rather than open-loop motor control, using the
feedback from the Hall-effect measurement sensor with
which it is equipped. Since the accurate tracking of the
motor references is crucial for the correct functioning of the
system, the measurements can be filtered or reconstructed
based on a motor model. Alternatively, an encoder can be
added to the system. Motor balancing may also be neces-
sary. Accurate motor speed measurement would result in a
noise-free acceleration signal in such a way as to consider
acceleration control rather than torque control. Furthermore,
it is possible to include the motor’s velocity limit in control.
The feasibility of these approaches and the implementation
of control are further directions for future investigation.
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