145 research outputs found

    Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations

    Get PDF
    Coherent vortices are often observed to persist for long times in turbulent 2D flows even at very high Reynolds numbers and are observed in experiments and computer simulations to potentially be asymptotically stable in a weak sense for the 2D Euler equations. We consider the incompressible 2D Euler equations linearized around a radially symmetric, strictly monotone decreasing vorticity distribution. For sufficiently regular data, we prove the inviscid damping of the θ-dependent radial and angular velocity fields with the optimal rates ∥ur(t)∥≲⟨t⟩−1 and ∥∥uθ(t)∥∥≲⟨t⟩−2 in the appropriate radially weighted L2 spaces. We moreover prove that the vorticity weakly converges back to radial symmetry as t→∞, a phenomenon known as vortex axisymmetrization in the physics literature, and characterize the dynamics in higher Sobolev spaces. Furthermore, we prove that the θ-dependent angular Fourier modes in the vorticity are ejected from the origin as t→∞, resulting in faster inviscid damping rates than those possible with passive scalar evolution. This non-local effect is called vorticity depletion. Our work appears to be the first to find vorticity depletion relevant for the dynamics of vortices

    Sympatho-Vagal Dysfunction in Patients with End-Stage Lung Disease Awaiting Lung Transplantation

    Get PDF
    Although the literature demonstrates that cardiac autonomic control (CAC) might be impaired in patients with chronic pulmonary diseases, the interplay between CAC and disease severity in end-stage lung disease has not been studied yet. We investigated the effects of end-stage lung disease on CAC through the analysis of heart rate variability (HRV) among patients awaiting lung transplantation. Forty-nine patients on the waiting list for lung transplantation (LTx; 19 men, age 38 \ub1 15 years) and 49 healthy non-smoking controls (HC; 22 men, age 40 \ub1 16 years) were enrolled in a case-control study at Policlinico Hospital in Milan, Italy. LTx patients were divided into two groups, according to disease severity evaluated by the Lung Allocation Score (LAS). To assess CAC, electrocardiogram (ECG) and respiration were recorded at rest for 10 min in supine position and for 10 min during active standing. Spectral analysis identified low and high frequencies (LF, sympathetic, and HF, vagal). Symbolic analysis identified three patterns, i.e., 0V% (sympathetic) and 2UV% and 2LV% (vagal). Compared to HCs, LTx patients showed higher markers of sympathetic modulation and lower markers of vagal modulation. However, more severely affected LTx patients, compared to less severely affected ones, showed an autonomic profile characterized by loss of sympathetic modulation and predominant vagal modulation. This pattern can be due to a loss of sympathetic rhythmic oscillation and a subsequent prevalent respiratory modulation of heart rate in severely affected patients

    Constraining the nature of the 18-min periodic radio transient GLEAM-X J162759.5-523504.3 via multi-wavelength observations and magneto-thermal simulations

    Get PDF
    We observed the periodic radio transient GLEAM-X J162759.5-523504.3 (GLEAM-X J1627) using the Chandra X-ray Observatory for about 30-ks on January 22-23, 2022, simultaneously with radio observations from MWA, MeerKAT and ATCA. Its radio emission and 18-min periodicity led the source to be tentatively interpreted as an extreme magnetar or a peculiar highly magnetic white dwarf. The source was not detected in the 0.3-8 keV energy range with a 3-sigma upper-limit on the count rate of 3x10^{-4} counts/s. No radio emission was detected during our X-ray observations either. Furthermore, we studied the field around GLEAM-X J1627 using archival ESO and DECam data, as well as recent SALT observations. Many sources are present close to the position of GLEAM-X J1627, but only two within the 2" radio position uncertainty. Depending on the assumed spectral distribution, the upper limits converted to an X-ray luminosity of L_{X}<6.5x10^{29} erg/s for a blackbody with temperature kT=0.3 keV, or L_{X}<9x10^{29} erg/s for a power-law with photon index Gamma = 2 (assuming a 1.3 kpc distance). Furthermore, we performed magneto-thermal simulations for neutron stars considering crust- and core-dominated field configurations. Based on our multi-band limits, we conclude that: i) in the magnetar scenario, the X-ray upper limits suggest that GLEAM-X J1627 should be older than ~1 Myr, unless it has a core-dominated magnetic field or has experienced fast-cooling; ii) in the white dwarf scenario, we can rule out most binary systems, a hot sub-dwarf and a hot magnetic isolated white dwarf (T>10.000 K), while a cold isolated white dwarf is still compatible with our limits.Comment: 17 pages, 9 figures; ApJ accepte

    Deep X-ray and radio observations of the first outburst of the young magnetar Swift J1818.0-1607

    Full text link
    Swift J1818.0-1607 is a radio-loud magnetar with a spin period of 1.36 s and a dipolar magnetic field strength of B~3E14 G, which is very young compared to the Galactic pulsar population. We report here on the long-term X-ray monitoring campaign of this young magnetar using XMM-Newton, NuSTAR, and Swift from the activation of its first outburst in March 2020 until October 2021, as well as INTEGRAL upper limits on its hard X-ray emission. The 1-10 keV magnetar spectrum is well modeled by an absorbed blackbody with a temperature of kT_BB~1.1 keV, and apparent reduction in the radius of the emitting region from ~0.6 to ~0.2 km. We also confirm the bright diffuse X-ray emission around the source extending between ~50'' and ~110''. A timing analysis revealed large torque variability, with an average spin-down rate nudot~-2.3E-11 Hz^2 that appears to decrease in magnitude over time. We also observed Swift J1818.0-1607 with the Karl G. Jansky Very Large Array (VLA) on 2021 March 22. We detected the radio counterpart to Swift J1818.0-1607 measuring a flux density of S_v = 4.38+/-0.05 mJy at 3 GHz, and a half ring-like structure of bright diffuse radio emission located at ~90'' to the west of the magnetar. We tentatively suggest that the diffuse X-ray emission is due to a dust scattering halo and that the radio structure may be associated with the supernova remnant of this young pulsar, based on its morphology.Comment: 19 pages, 8 figures, accepted for publication on Ap

    Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

    Get PDF
    We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of ≃1 × 1036 erg s-1 in about a week, the pulsar entered a ~1 month long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of ν˙SD=−(1.15±0.06)×10−15 Hz s-1, compatible with the spin-down torque of a ≈1026 G cm3 rotating magnetic dipole. For the first time in the last twenty years, the orbital phase evolution shows evidence for a decrease of the orbital period. The long-term behavior of the orbit is dominated by an ~11 s modulation of the orbital phase epoch consistent with a ~21 yr period. We discuss the observed evolution in terms of a coupling between the orbit and variations in the mass quadrupole of the companion star

    About curvature, conformal metrics and warped products

    Get PDF
    We consider the curvature of a family of warped products of two pseduo-Riemannian manifolds (B,gB)(B,g_B) and (F,gF)(F,g_F) furnished with metrics of the form c2gBw2gFc^{2}g_B \oplus w^2 g_F and, in particular, of the type w2μgBw2gFw^{2 \mu}g_B \oplus w^2 g_F, where c,w ⁣:B(0,)c, w \colon B \to (0,\infty) are smooth functions and μ\mu is a real parameter. We obtain suitable expressions for the Ricci tensor and scalar curvature of such products that allow us to establish results about the existence of Einstein or constant scalar curvature structures in these categories. If (B,gB)(B,g_B) is Riemannian, the latter question involves nonlinear elliptic partial differential equations with concave-convex nonlinearities and singular partial differential equations of the Lichnerowicz-York type among others.Comment: 32 pages, 3 figure

    EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Westerlund 1 and 2 Open Clusters Survey

    Full text link
    Context. With a mass exceeding several 10^4 solar masses and a rich and dense population of massive stars, supermassive young star clusters represent the most massive star-forming environment that is dominated by the feedback from massive stars and gravitational interactions among stars. Aims. In this paper we present the "Extended Westerlund 1 and 2 Open Clusters Survey" (EWOCS) project, which aims to investigate the influence of the starburst environment on the formation of stars and planets, and on the evolution of both low and high mass stars. The primary targets of this project are Westerlund 1 and 2, the closest supermassive star clusters to the Sun. Methods. The project is based primarily on recent observations conducted with the Chandra and JWST observatories. Specifically, the Chandra survey of Westerlund 1 consists of 36 new ACIS-I observations, nearly co-pointed, for a total exposure time of 1 Msec. Additionally, we included 8 archival Chandra/ACIS-S observations. This paper presents the resulting catalog of X-ray sources within and around Westerlund 1. Sources were detected by combining various existing methods, and photon extraction and source validation were carried out using the ACIS-Extract software. Results. The EWOCS X-ray catalog comprises 5963 validated sources out of the 9420 initially provided to ACIS-Extract, reaching a photon flux threshold of approximately 2x10^-8 photons/cm^2/s. The X-ray sources exhibit a highly concentrated spatial distribution, with 1075 sources located within the central 1 arcminute. We have successfully detected X-ray emissions from 126 out of the 166 known massive stars of the cluster, and we have collected over 71000 photons from the magnetar CXO J164710.20-455217Comment: The paper has been accepted for publication by Astronomy and Astrophysic

    The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

    Get PDF
    In the last 25 years, a new generation of X-ray satellites imparted a significant leap forward in our knowledge of X-ray pulsars. The discovery of accreting and transitional millisecond pulsars proved that disk accretion can spin up a neutron star to a very high rotation speed. The detection of MeV-GeV pulsed emission from a few hundreds of rotation-powered pulsars probed particle acceleration in the outer magnetosphere, or even beyond. Also, a population of two dozens of magnetars has emerged. INTEGRAL played a central role to achieve these results by providing instruments with high temporal resolution up to the hard X-ray/soft gamma-ray band and a large field of view imager with good angular resolution to spot hard X-ray transients. In this article, we review the main contributions by INTEGRAL to our understanding of the pulsating hard X-ray sky, such as the discovery and characterization of several accreting and transitional millisecond pulsars, the generation of the first catalog of hard X-ray/soft gamma-ray rotation-powered pulsars, the detection of polarization in the hard X-ray emission from the Crab pulsar, and the discovery of persistent hard X-ray emission from several magnetars.</p
    corecore