5 research outputs found

    Organometallic preparation of Ni, Pd, and Nipd nanoparticles for the design of supported nanocatalysts

    No full text
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQThe preparation of bimetallic nanoparticles with controlled size, shape, and composition remains a difficult task, and reproducible methods are highly desired. Here, we report the codecomposition of Ni(cod)2 and Pd 2(dba)3 organometallic precursors in the presence of hexadecylamine (HDA) and hydrogen as an efficient approach to get size-controlled bimetallic nickel-palladium nanoparticles. Presynthesized nickel-palladium nanoparticles of different Ni/Pd ratios were further used for the preparation of supported catalysts by the sol-immobilization method onto a magnetic silica. The obtained supported catalysts were investigated in the hydrogenation of cyclohexene and compared to Ni and Pd monometallic catalysts. The catalysts prepared with a 1:9 Ni/Pd molar ratio achieved the highest initial turnover frequency > 50000 h-1, providing higher activity than the pure Pd monometallic counterpart. This represents an important saving of noble metal. Moreover, the magnetic separation allows excellent separation of the catalyst from the liquid products without metal leaching and exposure to air, leading to an efficient recycling. © 2014 American Chemical Society.The preparation of bimetallic nanoparticles with controlled size, shape, and composition remains a difficult task, and reproducible methods are highly desired. Here, we report the codecomposition of Ni(cod)2 and Pd 2(dba)3 organometallic precursors in the presence of hexadecylamine (HDA) and hydrogen as an efficient approach to get size-controlled bimetallic nickel-palladium nanoparticles. Presynthesized nickel-palladium nanoparticles of different Ni/Pd ratios were further used for the preparation of supported catalysts by the sol-immobilization method onto a magnetic silica. The obtained supported catalysts were investigated in the hydrogenation of cyclohexene and compared to Ni and Pd monometallic catalysts. The catalysts prepared with a 1:9 Ni/Pd molar ratio achieved the highest initial turnover frequency > 50000 h-1, providing higher activity than the pure Pd monometallic counterpart. This represents an important saving of noble metal. Moreover, the magnetic separation allows excellent separation of the catalyst from the liquid products without metal leaching and exposure to air, leading to an efficient recycling.4617351742FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQSem informação695/10Sem informaçãoRichards, R., Koodali, R., Klabunde, K., Erickson, L., (2011) Nanoscale Materials in Chemistry: Environmental Application, , ACS Publications: Washington DCSchmid, G., (2012) Nanoparticles: From Theory to Application, , 2 nd ed. Wiley-VCH: WeinheimYamamoto, T.A., Kageyama, S., Seino, S., Nitani, H., Nakagawa, T., Horioka, R., Honda, Y., Daimon, H., (2011) Appl. Catal., A, 396, pp. 68-75Wei, Y.-C., Liu, C.-W., Chang, W.-J., Wang, K.-W., (2011) J. Alloys Compd., 509, pp. 535-541Somorjai, G.A., Frei, H., Park, J.Y., (2009) J. Am. Chem. Soc., 131, pp. 16589-16605Philippot, K., Serp, P., (2013) Concepts in Nanocatalysis, , Wiley-VCH: WeinheimLiu, M., Zhang, J., Liu, J., Yu, W.W., (2011) J. Catal., 278, pp. 1-7Jeon, T.-Y., Lee, K.-S., Yoo, S.J., Cho, Y.-H., Kang, S.H., Sung, Y.-E., (2010) Langmuir, 26, pp. 9123-9129Chen, T.-Y., Lin, T.-L., Luo, T.-J.M., Choi, Y., Lee, J.-F., (2010) ChemPhysChem, 11, pp. 2383-2392Chen, C.-H., Sarma, L.S., Wang, D.-Y., Lai, F.-J., Al Andra, C.-C., Chang, S.-H., Liu, D.-G., Hwang, B.-J., (2010) ChemCatChem., 2, pp. 159-166Murthy, A., Manthiram, A., (2011) Electrochem. Commun., 13, pp. 310-313Wang, D., Li, Y., (2011) Adv. Mater., 23, pp. 1044-1060Li, C., Shao, Z., Pang, M., Williams, C.T., Zhang, X., Liang, C., (2012) Ind. Eng. Chem. Res., 51, pp. 4934-4941Dehm, N.A., Zhang, X., Buriak, J.M., (2010) Inorg. Chem., 49, pp. 2706-2714Arakawa, T., Seki, H., Ohshima, M.-A., Kurokawa, H., Miura, H., (2009) Bull. Chem. Soc. Jpn., 82, pp. 627-629Astruc, D., (2008) Nanoparticles and Catalysis, , Wiley-VCH: WeinheimRoucoux, A., Schulz, J., Patin, H., (2002) Chem. Rev., 102, pp. 3757-3778Sanchez-Dominguez, M., Pemartin, K., Boutonnet, M., (2012) Curr. Opin. Colloid Interface Sci., 17, pp. 297-305Liu, X.W., Wang, D.S., Li, Y.D., (2012) Nano Today, 7, pp. 448-466Kalidindi, S.B., Sanyal, U., Jagirdar, B.R., (2011) ChemSusChem, 4, pp. 317-324Phillipot, K., Chaudret, B., (2007) Comprehensive Organometallic Chemistry III, p. 71. , Crabtree, R. H. Mingos, M. P. Elsevier: AmsterdamLara, P., Philippot, K., Chaudret, B., (2013) ChemCatChem., 5, pp. 28-45Kinayyigit, S., Lara, P., Lecante, P., Philippot, K., Chaudret, B., (2014) Nanoscale, 6, pp. 539-546Matsura, V., Guari, Y., Reye, C., Corriu, R.J.P., Tristany, M., Jansat, S., Philippot, K., Chaudret, B., (2009) Adv. Funct. Mater., 19, pp. 3781-3787Garcia-Suarez, E.J., Tristany, M., Garcia, A.B., Colliere, V., Philippot, K., (2012) Microporous Mesoporous Mater., 153, pp. 155-162Chaudret, B., Philippot, K., (2007) Oil Gas Sci. Technol., 62, pp. 799-817Castillejos, E., Debouttiere, P.-J., Roiban, L., Solhy, A., Martinez, V., Kihn, Y., Ersen, O., Serp, P., (2009) Angew. Chem., Int. Ed., 48, pp. 2529-2533Gates, B.C., (1995) Chem. Rev., 95, pp. 511-522Davis, S.E., Ide, M.S., Davis, R.J., (2013) Green Chem., 15, pp. 17-45Campelo, J.M., Luna, D., Luque, R., Marinas, J.M., Romero, A.A., (2009) ChemSusChem, 2, pp. 18-45Garcia-Suarez, E.J., Balu, A.M., Tristany, M., Garcia, A.B., Philippot, K., Luque, R., (2012) Green Chem., 14, pp. 1434-1439Costa, N.J.S., Jardim, R.F., Masunaga, S.H., Zanchet, D., Landers, R., Rossi, L.M., (2012) ACS Catal., 2, pp. 925-929Guerrero, M., Costa, N.J.S., Vono, L.L.R., Rossi, L.M., Gusevskaya, E.V., Philippot, K., (2013) J. Mater. Chem. A, 1, pp. 1441-1449Jacinto, M.J., Kiyohara, P.K., Masunaga, S.H., Jardim, R.F., Rossi, L.M., (2008) Appl. Catal. A-Gen., 338, pp. 52-57Cordente, N., Respaud, M., Senocq, F., Casanove, M.J., Amiens, C., Chaudret, B., (2001) Nano Lett., 1, pp. 565-568Ramirez, E., Jansat, S., Philippot, K., Lecante, P., Gomez, M., Masdeu-Bulto, A.M., Chaudret, B., (2004) J. Organomet. Chem., 689, pp. 4601-4610Shylesh, S., Schuenemann, V., Thiel, W.R., (2010) Angew. Chem., Int. Ed., 49, pp. 3428-3459Rossi, L.M., Garcia, M.A.S., Vono, L.L.R., (2012) J. Brazil. Chem. Soc., 23, pp. 1959-1971Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., Bassett, J.-M., (2011) Chem. Rev., 111, pp. 3036-3075Jacinto, M.J., Silva, F.P., Kiyohara, P.K., Landers, R., Rossi, L.M., (2012) ChemCatChem., 4, pp. 698-703Oliveira, R.L., Zanchet, D., Kiyohara, P.K., Rossi, L.M., (2011) Chem. - Eur. J., 17, pp. 4626-4631Neves, A.C.B., Calvete, M.J.F., Pinho Melo, E.T.M.V.D., Pereira, M.M., (2012) Eur. J. Org. Chem., 2012, pp. 6309-6320Collis, A.E.C., Horvath, I.T., (2011) Catal. Sci. Technol., 1, pp. 912-919Costa, N.J.S., Rossi, L.M., (2012) Nanoscale, 4, pp. 5826-5834Chen, Y., Peng, D.-L., Lin, D., Luo, X., (2007) Nanotechnology, 18, p. 505703Cullity, B.D., Graham, C.D., (2009) Introduction to Magnetic Materials, , 2 nd ed, John Wiley & Son: Hoboken, NJFischer, G., Herr, A., Meyer, A.J.P., (1968) J. Appl. Phys., 39, pp. 545-546Chouteau, G., Fourneau, R., Gobrecht, K., Tournier, R., (1968) Phys. Rev. Lett., 20, pp. 193-195Crangle, J., Scott, W.R., (1965) J. Appl. Phys., 36, pp. 921-927Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1979) Handbook of X-ray Photoelectron Spectroscopy Physical Electronics, p. 80. , Perkin-Elmer Corporation Physical Electronics Division: Eden Prairie, Minnesota, p, 110Damyanova, S., Pawelec, B., Arishtirova, K., Fierro, J.L.G., (2011) Int. J. Hydrogen Energy, 36, pp. 10635-10647Li, R., Wei, Z., Huang, T., Yu, A., (2011) Electrochim. Acta, 56, pp. 6860-6865Wang, L.G., Zunger, A., (2003) Phys. Rev. B, 67, p. 092103Watzky, M.A., Finke, R.G., (1997) J. Am. Chem. Soc., 119, pp. 10382-10400Besson, C., Finney, E.E., Finke, R.G., (2005) J. Am. Chem. Soc., 127, pp. 8179-8184Besson, C., Finney, E.E., Finke, R.G., (2005) Chem. Mater., 17, pp. 4925-4938Moulijn, J.A., Van Leeuwn, P.W.N.M., Van Santen, R.A., (1993) Catalysis: An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, , Elsevier: AmsterdamBatirev, I.G., Leiro, J.A., (1995) J. Electron Spectrosc., 71, pp. 79-86Hermann, P., Tardy, B., Simon, D., Guigner, J.M., Bigot, B., Bertolini, J.C., (1994) Surf. Sci., 307, pp. 422-427Hermann, P., Simon, D., Sautet, P., Bigot, B., (1997) J. Catal., 167, pp. 33-42Hermann, P., Guigner, J.M., Tardy, B., Jugnet, Y., Simon, D., Bertolini, J.C., (1996) J. Catal., 163, pp. 169-175Bertolini, J.C., Miegge, P., Hermann, P., Rousset, J.L., Tardy, B., (1995) Surf. Sci., 331, pp. 651-658Filhol, J.S., Simon, D., Sautet, P., (2001) Surf. Sci., 472, pp. L139-L144Filhol, J.S., Saint-Lager, M.C., De Santis, M., Dolle, P., Simon, D., Baudoing-Savois, R., Bertolini, J.C., Sautet, P., (2002) Phys. Rev. Lett., 89, p. 146106Knecht, M.R., Pacardo, D.B., (2010) Anal. Bioanal. Chem., 397, pp. 1137-1155Nunomura, N., Hori, H., Teranishi, T., Miyake, M., Yamada, S., (1998) Phys. Lett. A, 249, pp. 524-530Carazzolle, M.F., Maluf, S.S., De Siervo, A., Nascente, P.A.P., Landers, R., Kleiman, G.G., (2007) J. Electron Spectrosc., 156, pp. 405-408Massard, R., Uzio, D., Thomazeau, C., Pichon, C., Rousset, J.L., Bertolini, J.C., (2007) J. Catal., 245, pp. 133-143The authors would like to thank the Brazilian agencies FAPESP, CAPES, and CNPq for their financial support. The support received from the International Cooperation Program CAPES-COFECUB (grant 695/10) and CNRS is also appreciated. Additionally, LNNano-CNPEM (Campinas, Brazil) and TEMSCAN-UPS (Toulouse, France) are acknowledged for the use of their TEM/HRTEM facilities. The authors would like to thank Dr., Renato F. Jardim and Dr. Sueli H. Masunaga (Instituto de Fisica-Universidade de Sao Paulo) for discussions on magnetic measurement data

    Nursing values as social practice: a qualitative meta-synthesis

    No full text
    OBJECTIVE: to identify values which structure and guide nursing as social practice. METHOD: qualitative meta-synthesis. RESULTS: three concepts were identified: The tension between technique, organization and ethics in the nurse's practice; Historical carry-overs of the values which run through nursing practice; Attention to ethics, to reform of the health system, and to the humanization of care. These led to the synthesis of the principal variables 'planning' and 'care', which represent, respectively, guiding values of the technical-operative and ethical-moral elements of the social practice of nursing. CONCLUSION: these values are articulated through the prism of ordering so as to care well. Their recognition contributed to a better understanding of the process of health care and nursing care
    corecore