1,874 research outputs found
Majorana bound states without vortices in topological superconductors with electrostatic defects
Vortices in two-dimensional superconductors with broken time-reversal and
spin-rotation symmetry can bind states at zero excitation energy. These
socalled Majorana bound states transform a thermal insulator into a thermal
metal and may be used to encode topologically protected qubits. We identify an
alternative mechanism for the formation of Majorana bound states, akin to the
way in which Shockley states are formed on metal surfaces: An atomic-scale
electrostatic line defect can have a pair of Majorana bound states at the end
points. The Shockley mechanism explains the appearance of a thermal metal in
vortex-free lattice models of chiral p-wave superconductors and (unlike the
vortex mechanism) is also operative in the topologically trivial phase.Comment: 8 pages, 7 figures; the appendices are included as supplemental
material in the published versio
Zero-voltage conductance peak from weak antilocalization in a Majorana nanowire
We show that weak antilocalization by disorder competes with resonant Andreev
reflection from a Majorana zero-mode to produce a zero-voltage conductance peak
of order e^2/h in a superconducting nanowire. The phase conjugation needed for
quantum interference to survive a disorder average is provided by particle-hole
symmetry - in the absence of time-reversal symmetry and without requiring a
topologically nontrivial phase. We identify methods to distinguish the Majorana
resonance from the weak antilocalization effect.Comment: 13 pages, 8 figures. Addendum, February 2014: Appendix B shows
results for weak antilocalization in the circular ensemble. (This appendix is
not in the published version.
Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices
Pristine graphene is a semimetal and thus does not have a band gap. By making
a nanometer scale periodic array of holes in the graphene sheet a band gap may
form; the size of the gap is controllable by adjusting the parameters of the
lattice. The hole diameter, hole geometry, lattice geometry and the separation
of the holes are parameters that all play an important role in determining the
size of the band gap, which, for technological applications, should be at least
of the order of tenths of an eV. We investigate four different hole
configurations: the rectangular, the triangular, the rotated triangular and the
honeycomb lattice. It is found that the lattice geometry plays a crucial role
for size of the band gap: the triangular arrangement displays always a sizable
gap, while for the other types only particular hole separations lead to a large
gap. This observation is explained using Clar sextet theory, and we find that a
sufficient condition for a large gap is that the number of sextets exceeds one
third of the total number of hexagons in the unit cell. Furthermore, we
investigate non-isosceles triangular structures to probe the sensitivity of the
gap in triangular lattices to small changes in geometry
Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.
Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention
Quantum dots and spin qubits in graphene
This is a review on graphene quantum dots and their use as a host for spin
qubits. We discuss the advantages but also the challenges to use graphene
quantum dots for spin qubits as compared to the more standard materials like
GaAs. We start with an overview of this young and fascinating field and will
then discuss gate-tunable quantum dots in detail. We calculate the bound states
for three different quantum dot architectures where a bulk gap allows for
confinement via electrostatic fields: (i) graphene nanoribbons with armchair
boundary, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer
graphene. In order for graphene quantum dots to be useful in the context of
spin qubits, one needs to find reliable ways to break the valley-degeneracy.
This is achieved here, either by a specific termination of graphene in (i) or
in (ii) and (iii) by a magnetic field, without the need of a specific boundary.
We further discuss how to manipulate spin in these quantum dots and explain the
mechanism of spin decoherence and relaxation caused by spin-orbit interaction
in combination with electron-phonon coupling, and by hyperfine interaction with
the nuclear spin system.Comment: 23 pages, 10 figures, topical review prepared for Nanotechnolog
Majorana fermions on a disordered triangular lattice
Vortices of several condensed matter systems are predicted to have
zero-energy core excitations which are Majorana fermions. These exotic
quasi-particles are neutral, massless, and expected to have non-Abelian
statistics. Furthermore, they make the ground state of the system highly
degenerate. For a large density of vortices, an Abrikosov lattice is formed,
and tunneling of Majorana fermions between vortices removes the energy
degeneracy. In particular the spectrum of Majorana fermions in a triangular
lattice is gapped, and the Hamiltonian which describes such a system is
antisymmetric under time-reversal. We consider Majorana fermions on a
disordered triangular lattice. We find that even for very weak disorder in the
location of the vortices localized sub-gap modes appear. As the disorder
becomes strong, a percolation phase transition takes place, and the gap is
fully closed by extended states. The mechanism that underlies these phenomena
is domain walls between two time-reversed phases, which are created by flipping
the sign of the tunneling matrix elements. The density of states in the
disordered lattice seems to diverge at zero energy.Comment: 19 pages, 10 figure
Spectroscopy of Na: shell evolution toward the drip line
Excited states in Na have been studied using the -decay of
implanted Ne ions at GANIL/LISE as well as the in-beam -ray
spectroscopy at the NSCL/S800 facility. New states of positive
(J=3,4) and negative (J=1-5) parity are proposed. The
former arise from the coupling between 0d protons and a 0d
neutron, while the latter are due to couplings with 1p or 0f
neutrons. While the relative energies between the J=1-4 states are
well reproduced with the USDA interaction in the N=17 isotones, a progressive
shift in the ground state binding energy (by about 500 keV) is observed between
F and Al. This points to a possible change in the proton-neutron
0d-0d effective interaction when moving from stability to the
drip line. The presence of J=1-4 negative parity states around 1.5
MeV as well as of a candidate for a J=5 state around 2.5 MeV give
further support to the collapse of the N=20 gap and to the inversion between
the 0f and 1p levels below Z=12. These features are discussed
in the framework of Shell Model and EDF calculations, leading to predicted
negative parity states in the low energy spectra of the F and O
nuclei.Comment: Exp\'erience GANIL/LISE et NSCL/S80
- âŠ