233 research outputs found

    Unadulterated spectral function of low energy quasiparticles: Bi-2212, nodal direction

    Get PDF
    Fitting the momentum distribution photoemission spectra to the Voigt profile appears to be a robust procedure to purify the interaction effects from the experimental resolution. In application to Bi-2212 high-Tc cuprates, the procedure reveals the true scattering rate at low binding energies and temperatures, and, consequently, the true value of the elastic scattering. Reaching the minimal value ~ 16 meV, the elastic scattering does not reveal a systematic dependence on doping level, but is rather sensitive to impurity concentration, and can be explained by the forward scattering on out-of-plane impurities. The inelastic scattering is found to form well-defined quasiparticles with the quadratic and cubic energy dependence of the scattering rate above and below Tc, respectively. The observed energy-temperature asymmetry of the scattering rate is also discussed.Comment: 4 revtex pages, 4 figure

    Superconducting properties of Nb thin films deposited on porous silicon templates

    Full text link
    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependence of the superconducting resistive transition width at H=1 Tesla. This field value is much higher than typical matching fields in perforated superconductors, as a consequence of the small interpore distance.Comment: accepted for publication on Journal of Applied Physic

    Inter- and Intragranular Effects in Superconducting Compacted Platinum Powders

    Full text link
    Compacted platinum powders exhibit a sharp onset of diamagnetic screening at T1.9T \simeq 1.9 mK in zero magnetic field in all samples investigated. This sharp onset is interpreted in terms of the intragranular transition into the superconducting state. At lower temperatures, the magnetic ac susceptibility strongly depends on the ac field amplitude and reflects the small intergranular critical current density jcj_{c}. This critical current density shows a strong dependence on the packing fraction f of the granular samples. Surprisingly, jcj_{c} increases significantly with decreasing f (jc(B=0,T=0)0.07j_{c}(B=0, T=0) \simeq 0.07 A/cm2^{2} for f = 0.67 and jc(B=0,T=0)0.8j_{c}(B=0, T=0) \simeq 0.8 A/cm2^{2} for f = 0.50). The temperature dependence of jcj_{c} shows strong positive curvature over a wide temperature range for both samples. The phase diagrams of inter- and intragranular superconductivity for different samples indicate that the granular structure might play the key role for an understanding of the origin of superconductivity in the platinum compacts.Comment: 11 pages including 9 figures. To appear in Phys. Rev. B in Nov. 0

    Assembling the puzzle of superconducting elements: A Review

    Full text link
    Superconductivity in the simple elements is of both technological relevance and fundamental scientific interest in the investigation of superconductivity phenomena. Recent advances in the instrumentation of physics under pressure have enabled the observation of superconductivity in many elements not previously known to superconduct, and at steadily increasing temperatures. This article offers a review of the state of the art in the superconductivity of elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc. Sci. Techno

    Effect of granularity on the insulator-superconductor transition in ultrathin Bi films

    Full text link
    We have studied the insulator-superconductor transition (IST) by tuning the thickness in quench-condensed BiBi films. The resistive transitions of the superconducting films are smooth and can be considered to represent "homogeneous" films. The observation of an IST very close to the quantum resistance for pairs, RNh/4e2R_{\Box}^N \sim h/4e^2 on several substrates supports this idea. The relevant length scales here are the localization length, and the coherence length. However, at the transition, the localization length is much higher than the superconducting coherence length, contrary to expectation for a "homogeneous" transition. This suggests the invalidity of a purely fermionic model for the transition. Furthermore, the current-voltage characteristics of the superconducting films are hysteretic, and show the films to be granular. The relevant energy scales here are the Josephson coupling energy and the charging energy. However, Josephson coupling energies (EJE_J) and the charging energies (EcE_c) at the IST, they are found to obey the relation EJ<EcE_J < E_c. This is again contrary to expectation, for the IST in a granular or inhomogeneous, system. Hence, a purely bosonic picture of the transition is also inconsistent with our observations. We conclude that the IST observed in our experiments may be either an intermediate case between the fermioinc and bosonic mechanisms, or in a regime of charge and vortex dynamics for which a quantitative analysis has not yet been done.Comment: accepted in Physical Review

    Possible robust insulator-superconductor transition on solid inert gas and other substrates

    Full text link
    We present observations of the insulator-superconductor transition in ultrathin films of Bi on amorphous quartz, quartz coated with Ge, and for the first time, solid xenon condensed on quartz. The relative permeability ϵr\epsilon_r ranges from 1.5 for Xe to 15 for Ge. Though we find screening effects as expected, the I-S transition is robust, and unmodified by the substrate. The resistance separatrix is found to be close to h/4e^2 and the crossover thickness close to 25A˚\rm 25 \AA for all substrates. I-V studies and Aslamazov-Larkin analyses indicate superconductivity is inhomogeneous. The transition can be understood in terms of a percolation model.Comment: accepted in Physical Review

    Food effects on statolith composition of the common cuttlefish (Sepia officinalis)

    Get PDF
    The concentration of trace elements within cephalopod statoliths can provide a record of the environmental characteristics at the time of calcification. To reconstruct accurately the environmental characteristics at the time of calcification, it is important to understand the influence of as many factors as possible. To test the hypothesis that the elemental composition of cuttlefish statoliths could be influenced by diet, juvenile Sepia officinalis were fed either shrimp Crangon sp. or fish Clupea harengus under equal temperature and salinity regimes in laboratory experiments. Element concentrations in different regions of the statoliths (core–lateral dome–rostrum) were determined using laser ablation inductively coupled plasma mass spectrometry (LA- ICPMS). The ratios of Sr/Ca, Ba/Ca, Mn/Ca and Y/Ca in the statolith’s lateral dome of shrimp-fed cuttlefish were significantly higher than in the statolith’s lateral dome of fish-fed cuttlefish. Moreover, significant differences between statolith regions were found for all analysed elements. The fact that diet adds a considerable variation especially to Sr/Ca and Ba/Ca must be taken into account in future micro-chemical statolith studies targeting cephalopod’s life history

    Promotion of protocell self-assembly from mixed amphiphiles at the origin of life

    Get PDF
    Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1–3 SCAs, even though Fischer–Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10–C15 compounds. Here, we show that mixtures of these C10–C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it

    Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats

    Get PDF
    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.</p

    Biochemical, Structural and Molecular Dynamics Analyses of the Potential Virulence Factor RipA from Yersinia pestis

    Get PDF
    Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in this unique virulence pathway
    corecore