1,021 research outputs found
Time-dependent density functional theory for strong electromagnetic fields in crystalline solids
We apply the coupled dynamics of time-dependent density functional theory and
Maxwell equations to the interaction of intense laser pulses with crystalline
silicon. As a function of electromagnetic field intensity, we see several
regions in the response. At the lowest intensities, the pulse is reflected and
transmitted in accord with the dielectric response, and the characteristics of
the energy deposition is consistent with two-photon absorption. The absorption
process begins to deviate from that at laser intensities ~ 10^13 W/cm^2, where
the energy deposited is of the order of 1 eV per atom. Changes in the
reflectivity are seen as a function of intensity. When it passes a threshold of
about 3 \times 1012 W/cm2, there is a small decrease. At higher intensities,
above 2 \times 10^13 W/cm^2, the reflectivity increases strongly. This behavior
can be understood qualitatively in a model treating the excited electron-hole
pairs as a plasma.Comment: 27 pages; 11 figure
Effects of Collective Potentials on Pion Spectra in Relativistic Heavy Ion Collisions
The effect of collective potentials on pion spectra in ultrarelativistic
heavy ion collisions is investigated. We find the effect of these potential to
be very small, too small to explain the observed enhancement at low transverse
momenta. (7 figures, bill be send on request)Comment: 11 page
Self-Similar Intermediate Asymptotics for a Degenerate Parabolic Filtration-Absorption Equation
The equation is
known in literature as a qualitative mathematical model of some biological
phenomena. Here this equation is derived as a model of the groundwater flow in
a water absorbing fissurized porous rock, therefore we refer to this equation
as a filtration-absorption equation. A family of self-similar solutions to this
equation is constructed. Numerical investigation of the evolution of
non-self-similar solutions to the Cauchy problems having compactly supported
initial conditions is performed. Numerical experiments indicate that the
self-similar solutions obtained represent intermediate asymptotics of a wider
class of solutions when the influence of details of the initial conditions
disappears but the solution is still far from the ultimate state: identical
zero. An open problem caused by the nonuniqueness of the solution of the Cauchy
problem is discussed.Comment: 19 pages, includes 7 figure
Energy spectrum and effective mass using a non-local 3-body interaction
We recently proposed a nonlocal form for the 3-body induced interaction that
is consistent with the Fock space representation of interaction operators but
leads to a fractional power dependence on the density. Here we examine the
implications of the nonlocality for the excitation spectrum. In the
two-component weakly interacting Fermi gas, we find that it gives an effective
mass that is comparable to the one in many-body perturbation theory. Applying
the interaction to nuclear matter, it predicts a large enhancement to the
effective mass. Since the saturation of nuclear matter is partly due to the
induced 3-body interaction, fitted functionals should treat the effective mass
as a free parameter, unless the two- and three-body contributions are
determined from basic theory.Comment: 7 pages, 1 figure; V2 has a table showing the 3-body energies for two
phenomenological energy-density functional
Conductance of a single-atom carbon chain with graphene leads
We study the conductance of an interconnect between two graphene leads formed
by a single-atom carbon chain. Its dependence on the chemical potential and the
number of atoms in the chain is qualitatively different from that in the case
of normal metal leads. Electron transport proceeds via narrow resonant states
in the wire. The latter arise due to strong reflection at the junctions between
the chain and the leads, which is caused by the small density of states in the
leads at low energy. The energy dependence of the transmission coefficient near
resonance is asymmetric and acquires a universal form at small energies. We
find that in the case of leads with the zigzag edges the dispersion of the edge
states has a significant effect on the device conductance.Comment: 9 pages, 4 figure
Nuclear composition and energy spectra in the 12 April 1969 solar particle event
Nuclear composition for several multicharged nuclei and energy spectra for hydrogen, helium, and medium nuclei measured in solar particle even
Collective oscillations of a trapped Fermi gas near the unitary limit
We calculate the oscillation frequencies of trapped Fermi condensate with
particular emphasis on the equation of state of the interacting Fermi system.
We confirm Stringari's finding that the frequencies are independent of the
interaction in the unitary limit, and we extend the theory away from that
limit, where the interaction does affect the frequencies of the compressional
modes only.Comment: 4 pages, corrected a couple of trivial mistakes in table II and the
related text and added reference
Surface response of spherical core-shell structured nanoparticle by optically induced elastic oscillations of soft shell against hard core
The optically induced oscillatory response of a spherical two-component,
shell-core structured, nanoparticle by nodeless elastic vibrations of soft
peripheral shell against hard and dynamically immobile inner core is
considered. The eigenfrequencies of the even-parity, spheroidal and odd-parity
torsional vibrational modes trapped in the finite-depth shell are obtained
which are of practical interest for modal specification of individual
resonances in spectra of resonant scattering of long wavelength electromagnetic
waves by ultrafine particles.Comment: Surface Review and Letters (World Scientific) Year: 2009 Vol: 16
Issue: 1 (February 2009) Page: 5 - 1
- …