6,221 research outputs found

    Cms gem detector material study for the hl-lhc

    Get PDF
    A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate, moisture saturation level and the effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the foil material. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed with COMSOL Multiphysics v. 4.3 [1] by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption of water. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties

    Variability and predictors of response to continuous theta burst stimulation: a TMS-EEG study

    Get PDF
    Continuous theta-burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation paradigm reported to decrease the excitability of the stimulated cortical area and which is thought to reflect a form of inhibitory synaptic plasticity. However, since its introduction, the effect of cTBS has shown a remarkable variability in its effects, which are often quantified by measuring the amplitude of motor evoked potentials (MEPs). Part of this inconsistency in experimental results might be due to an intrinsic variability of TMS effects caused by genetic or neurophysiologic factors. However, it is also possible that MEP only reflect the excitability of a sub-population of output neurons; resting EEG power and measures combining TMS and electroencephalography (TMS-EEG) might represent a more thorough reflection of cortical excitability. The aim of the present study was to verify the robustness of several predictors of cTBS response, such as I wave recruitment and baseline MEP amplitude, and to test cTBS after-effects on multiple neurophysiologic measurements such as MEP, resting EEG power, local mean field power (LMFP), TMS-related spectral perturbation (TRSP), and inter-trial phase clustering (ITPC). As a result, we were not able to confirm either the expected decrease of MEP amplitude after cTBS or the ability of I wave recruitment and MEP amplitude to predict the response to cTBS. Resting EEG power, LMFP, TRSP, and ITPC showed a more consistent trend toward a decrease after cTBS. Overall, our data suggest that the effect of cTBS on corticospinal excitability is variable and difficult to predict with common electrophysiologic markers, while its effect might be clearer when probed with combined TMS and EEG

    Correlated Λd\Lambda d pairs from the KstopAΛdAK^{-}_{stop} A \to \Lambda d A' reaction

    Full text link
    Correlated Λd\Lambda d pairs emitted after the absorption of negative kaons at rest KstopAΛdAK^{-}_{stop}A\to \Lambda d A' in light nuclei 6Li^6Li and 12C^{12}C are studied. Λ\Lambda-hyperons and deuterons are found to be preferentially emitted in opposite directions. The Λd\Lambda d invariant mass spectrum of 6Li^6Li shows a bump whose mass is 3251±\pm6 MeV/c2^2. The bump mass (binding energy), width and yield are reported. The appearance of a bump is discussed in the realm of the [Kˉ3N\bar{K}3N] clustering process in nuclei. The experiment was performed with the FINUDA spectrometer at DAΦ\PhiNE (LNF).Comment: 13 pages, 5 figures, accepted for publication in Phys. Lett.

    The A(Kstop,π±Σ)AA(K^-_{stop},\pi^\pm\Sigma^\mp)A' reaction on p-shell nuclei

    Get PDF
    This letter is concerned with the study of the KstopAπ±ΣAK^-_{stop}A\rightarrow \pi^\pm\Sigma^\mp A' reaction in p-shell nuclei, i.e., 6,7Li^{6,7}Li, 9Be^9Be, 13C^{13}C and 16O^{16}O. The π±Σ/Kstop\pi^\pm\Sigma^\mp / K^-_{stop} emission rates are reported as a function of AA. These rates are discussed in comparison with previous findings. The ratio πΣ+/π+Σ\pi^-\Sigma^+/\pi^+\Sigma^- in p-shell nuclei is found to depart largely from that on hydrogen, which provides support for large in-medium effects possibly generated by the sub-threshold Λ(1405)\Lambda(1405). The continuum momentum spectra of prompt pions and free sigmas are also discussed as well as the π±Σ\pi^\pm\Sigma^\mp missing mass behavior and the link with the reaction mechanism. The apparatus used for the investigation is the FINUDA spectrometer operating at the DAΦ\PhiNE ϕ\phi-factory (LNF-INFN, Italy).Comment: 14 pages, 5 figures, accepted for publication in Phys. Lett.

    Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer’s disease and frontotemporal lobar degeneration

    Get PDF
    Background: In the last decade, non-invasive blood-based and neurophysiological biomarkers have shown great potential for the discrimination of several neurodegenerative disorders. However, in the clinical workup of patients with cognitive impairment, it will be highly unlikely that any biomarker will achieve the highest potential predictive accuracy on its own, owing to the multifactorial nature of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Methods: In this retrospective study, performed on 202 participants, we analysed plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau phosphorylated at amino acid 181 (p-Tau181) concentrations, as well as amyloid β42 to 40 ratio (Aβ1–42/1–40) ratio, using the ultrasensitive single-molecule array (Simoa) technique, and neurophysiological measures obtained by transcranial magnetic stimulation (TMS), including short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), and short-latency afferent inhibition (SAI). We assessed the diagnostic accuracy of combinations of both plasma and neurophysiological biomarkers in the differential diagnosis between healthy ageing, AD, and FTLD. Results: We observed significant differences in plasma NfL, GFAP, and p-Tau181 levels between the groups, but not for the Aβ1–42/Aβ1–40 ratio. For the evaluation of diagnostic accuracy, we adopted a two-step process which reflects the clinical judgement on clinical grounds. In the first step, the best single biomarker to classify “cases” vs “controls” was NfL (AUC 0.94, p < 0.001), whilst in the second step, the best single biomarker to classify AD vs FTLD was SAI (AUC 0.96, p < 0.001). The combination of multiple biomarkers significantly increased diagnostic accuracy. The best model for classifying “cases” vs “controls” included the predictors p-Tau181, GFAP, NfL, SICI, ICF, and SAI, resulting in an AUC of 0.99 (p < 0.001). For the second step, classifying AD from FTD, the best model included the combination of Aβ1–42/Aβ1–40 ratio, p-Tau181, SICI, ICF, and SAI, resulting in an AUC of 0.98 (p < 0.001). Conclusions: The combined assessment of plasma and neurophysiological measures may greatly improve the differential diagnosis of AD and FTLD

    First determination of the one-proton induced Non-Mesonic Weak Decay width of p-shell {\Lambda}-Hypernuclei

    Get PDF
    Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained from single proton spectra, Gamma_2N/Gamma_p = 0.50 +/- 0.24, and from neutron and proton coincidence spectra, Gamma_2N/Gamma_p = 0.36 +/- 0.14stat +0.05sys -0.04sys , in full agreement with previously published ones. With these values, a method is developed to extract the one-proton induced decay width in units of the free Lambda decay width, Gamma_p/Gamma_Lambda, without resorting to Intra Nuclear Cascade models but by exploiting only experimental data, under the assumption of a linear dependence on A of the Final State Interaction contribution. This is the first systematic determination ever done and it agrees within the errors with recent theoretical calculations.Comment: 16 pages, 3 figures, 2 table

    JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models

    Get PDF
    Alzheimer's disease (AD) is a major clinical concern, and the search for new molecules to combat disease progression remains important. One of the major hallmarks in AD pathogenesis is the hyperphosphorylation of tau and subsequent formation of neurofibrillary tangles. Several kinases are involved in this process. Amongst them, c-Jun N-terminal kinases (JNKs) are activated in AD brains and are also associated with the development of amyloid plaques. This study was designed to investigate the contribution of JNK in tau hyperphosphorylation and whether it may represent a potential therapeutic target for the fight against AD. The specific inhibition of JNK by the cell permeable peptide D-JNKI-1 led to a reduction of p-tau at S202/T205 and S422, two established target sites of JNK, in rat neuronal cultures and in human fibroblasts cultures. Similarly, D-JNKI-1 reduced p-tau at S202/T205 in an in vivo model of AD (TgCRND8 mice). Our findings support the fundamental role of JNK in the regulation of tau hyperphosphorylation and subsequently in AD pathogenesis

    Production of Λ6^{6}_{\Lambda}H and Λ7^{7}_{\Lambda}H with the (Kstop^{-}_{stop},π+\pi^+) reaction

    Full text link
    The production of neutron rich Λ\Lambda-hypernuclei via the (KstopK^-_stop,π+\pi^+) reaction has been studied using data collected with the FINUDA spectrometer at the DAΦ\PhiNE ϕ\phi-factory (LNF). The analysis of the inclusive π+\pi^+ momentum spectra is presented and an upper limit for the production of Λ6^6_\LambdaH and Λ7^7_\LambdaH from 6^6Li and 7^7Li, is assessed for the first time.Comment: 11 pages, 3 figures. Accepted for publication in PL

    Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning

    Full text link
    The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms
    corecore