1,358 research outputs found

    g factor of lithiumlike silicon 28Si11+

    Full text link
    The g factor of lithiumlike 28Si11+ has been measured in a triple-Penning trap with a relative uncertainty of 1.1x10^{-9} to be g_exp=2.0008898899(21). The theoretical prediction for this value was calculated to be g_th=2.000889909(51) improving the accuracy to 2.5x10^{-8} due to the first rigorous evaluation of the two-photon exchange correction. The measured value is in excellent agreement with the state-of-the-art theoretical prediction and yields the most stringent test of bound-state QED for the g factor of the 1s^22s state and the relativistic many-electron calculations in a magnetic field

    Crystal structure of bis(η5-cyclopenta-dienyl)(2, 3-diethylbutane-1, 4-diyl)-hafnium(IV)

    Get PDF
    The title compound, [Hf(C5H5)2(C8H16)], proves a structural motif of hafna­cyclo­pentane besides the coordination of two cyclo­penta­dienyl ligands in an [eta]5-fashion. The hafna­cyclo­pentane ring has a twist conformation and is substituted by two ethyl groups in the [beta],[beta]'-positions, which are trans orientated to each other. One cyclo­penta­dienyl ring and one ethyl group are each disordered over two positions with site-occupancy ratios of 0.679 (15):0.321 (15) and 0.702 (18):0.298 (18), respectively

    "Seeing the Faces Is So Important" -- Experiences From Online Team Meetings on Commercial Virtual Reality Platforms

    Get PDF
    During the Covid-19 pandemic, online meetings became common for daily teamwork in the home office. To understand the opportunities and challenges of meeting in virtual reality (VR) compared to video conferences, we conducted the weekly team meetings of our human-computer interaction research lab on five off-the-shelf online meeting platforms over four months. After each of the 12 meetings, we asked the participants (N = 32) to share their experiences, resulting in 200 completed online questionnaires. We evaluated the ratings of the overall meeting experience and conducted an exploratory factor analysis of the quantitative data to compare VR meetings and video calls in terms of meeting involvement and co-presence. In addition, a thematic analysis of the qualitative data revealed genuine insights covering five themes: spatial aspects, meeting atmosphere, expression of emotions, meeting productivity, and user needs. We reflect on our findings gained under authentic working conditions, derive lessons learned for running successful team meetings in VR supporting different kinds of meeting formats, and discuss the team's long-term platform choice.Comment: This article has been published at Frontiers in Virtual Reality, Research Topic "Everyday Virtual and Augmented Reality: Methods and Applications, Volume II": https://doi.org/10.3389/frvir.2022.94579

    Potential of combined neutron and X-ray imaging to quantify local carbon contents in soil

    Get PDF
    In this study, we investigated the potential and limitations of using joint X-ray and time-of-flight (TOF) neutron imaging for mapping the 3-dimensional organic carbon distribution in soil. This approach is viable because neutron and X-ray beams have complementary attenuation properties. Soil minerals consist to a large part of silicon and aluminium, and elements that are relatively translucent to neutrons but attenuate X-rays. In contrast, attenuation of neutrons is strong for hydrogen, which is abundant in soil organic matter (SOM), while hydrogen barely attenuates X-rays. In theory, TOF neutron imaging does further more allow the imaging of Bragg edges, which correspond to d-spacings in minerals. This could help to distinguish between SOM and clay minerals, the mineral group in soil that is most strongly associated with hydrogen atoms. We collected TOF neutron image data at the IMAT beamline at the ISIS facility and synchrotron X-ray image data at the I12 beamline at the Diamond Light source, both located within the Rutherford Appleton Laboratory, Harwell, UK. The white beam (the full energy spectrum) neutron image clearly showed variations in neutron attenuation within soil aggregates at approximately constant X-ray attenuations. This indicates a constant bulk density with varying organic matter and/or clay content. Unfortunately, the combination of TOF neutron and X-ray imaging was not suited to allow for a distinction between SOM and clay minerals at the voxel scale. While such a distinction is possible in theory, it is prevented by technical limitations. One of the main reasons is that the neutron frequencies available at modern neutron sources are too large to capture the main d-spacings of clay minerals. As a result, inference to voxel scale SOM concentrations is presently not feasible. Future improved neutron sources and advanced detector designs will eventually overcome the technical problems encountered here. On the positive side, combined X-ray and TOF neutron imaging demonstrated abilities to identify quartz grains and to distinguish between plastics and plant seeds. Highlights Full understanding of biogeochemical processes requires three-dimensional (3-D) maps of organic matter in soil (SOM). This study investigates a novel method to map voxel-scale SOM contents with 3-D resolution. The method is based a combination of X-ray and time-of-flight neutron tomography. At present, technical limitations prevent distinguishing between SOM and clay mineral contents. More advanced neutron sources are required to overcome the encountered technical obstacles

    Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transgenic mice overexpressing Homer1a in the forebrain (H1a-mice), we analyzed synaptic plasticity, pain behavior and mGluR1 function in the basolateral amygdala (BLA) in a model of arthritis pain.</p> <p>Findings</p> <p>In contrast to wild-type mice, H1a-mice mice did not develop increased pain behaviors (spinal reflexes and audible and ultrasonic vocalizations) after induction of arthritis in the knee joint. Whole-cell patch-clamp recordings in brain slices showed that excitatory synaptic transmission from the BLA to the central nucleus (CeA) did not change in arthritic H1a-mice but increased in arthritic wild-type mice. A selective mGluR1 antagonist (CPCCOEt) had no effect on enhanced synaptic transmission in slices from H1a-BLA mice with arthritis but inhibited transmission in wild-type mice with arthritis as in our previous studies in rats.</p> <p>Conclusions</p> <p>The results show that Homer1a expressed in forebrain neurons, prevents the development of pain hypersensitivity in arthritis and disrupts pain-related plasticity at synapses in amygdaloid nuclei. Furthermore, Homer1a eliminates the effect of an mGluR1 antagonist, which is consistent with the well-documented disruption of mGluR1 signaling by Homer1a. These findings emphasize the important role of mGluR1 in pain-related amygdala plasticity and provide evidence for the involvement of Homer1 proteins in the forebrain in the modulation of pain hypersensitivity.</p

    Maternal hypertensive disorders in pregnancy and early childhood cardiometabolic risk factors:The Generation R Study

    Get PDF
    The objective of this study was to determine the associations between hypertensive disorders of pregnancy and early childhood cardiometabolic risk factors in the offspring. Therefore, 7794 women from the Generation Rotterdam Study were included, an ongoing population-based prospective birth cohort. Women with a hypertensive disorder of pregnancy were classified as such when they were affected by pregnancy induced hypertension, pre-eclampsia or the haemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome during pregnancy. Early childhood cardiometabolic risk factors were defined as the body mass index at the age of 2, 6, 12, 36 months and 6 years. Additionally, it included systolic blood pressure, diastolic blood pressure, total fat mass, cholesterol, triglycerides, insulin and clustering of cardiometabolic risk factors at 6 years of age. Sex-specific differences in the associations between hypertensive disorders and early childhood cardiometabolic risk factors were investigated. Maternal hypertensive disorders of pregnancy were inversely associated with childhood body mass index at 12 months (confounder model: -0.15 SD, 95% CI -0.27; -0.03) and childhood triglyceride at 6 years of age (confounder model: -0.28 SD, 95% CI -0.45; -0.10). For the association with triglycerides, this was only present in girls. Maternal hypertensive disorders of pregnancy were not associated with childhood body mass index at 2, 6 and 36 months. No associations were observed between maternal hypertensive disorders of pregnancy and systolic blood pressure, diastolic blood pressure, body mass index, fat mass index and cholesterol levels at 6 years of age. Our findings do not support an independent and consistent association between maternal hypertensive disorders of pregnancy and early childhood cardiometabolic risk factors in their offspring. However, this does not rule out possible longer term effects of maternal hypertensive disorders of pregnancy on offspring cardiometabolic health
    corecore