458 research outputs found

    Experimental characterization of fibre-reinforced composites improved with nanofibres or nanotubes

    Get PDF
    A review is presented on the testing and mechanical properties of continuous fibre reinforced composites modified with nanotubes or nanofibres either dispersed in the resin or grown on the microfibres. The nano-level cross-links are shown to be able to (1) increase the fibre/matrix interfacial strength, (2) reduce the inter-fibre crack growth, and (3) improve the inter-ply delamination resistance. A positive influence on the thermal expansion is also detected. However, for unfavourable material constitutions, the strength properties can stay almost the same or even significantly deteriorate

    Deformability of a textile reinforcement modified with nanofibres

    Get PDF
    Deformability of a textile fabric is studied experimentally using a) friction test, b) out-of-plane compression, and c) bending. These tests reveal that a grafting of the fabric with carbon nano-fibres can significantly deteriorate its deformability. Therefore an optimal CNF mass fraction should be chosen for a particular production case, to obtain a compromise between improved strength and decreased drapability

    Analysis of flame acceleration induced by wall friction in open tubes

    Get PDF
    Spontaneous flame acceleration leading to explosion triggering in open tubes/channels due to wall friction was analytically and computationally studied. It was first demonstrated that the acceleration is affected when the thermal expansion across the flame exceeds a critical value depending on the combustion configuration. For the axisymmetric flame propagation in cylindrical tubes with both ends open, a theory of the initial (exponential) stage of flame acceleration in the quasi-isobaric limit was developed and substantiated by extensive numerical simulation of the hydrodynamics and combustion with an Arrhenius reaction. The dynamics of the flame shape, velocity, and acceleration rate, as well as the velocity profile ahead and behind the flame, have been determined. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3425646

    Fast electrochemical doping due to front instability in organic semiconductors

    Full text link
    The electrochemical doping transformation in organic semiconductor devices is studied in application to light-emitting cells. It is shown that the device performance can be significantly improved by utilizing new fundamental properties of the doping process. We obtain an instability, which distorts the doping fronts and increases the doping rate considerably. We explain the physical mechanism of the instability, develop theory, provide experimental evidence, and perform numerical simulations. We further show how improved device design can amplify the instability thus leading to a much faster doping process and device kinetics.Comment: 4 pages, 4 figure

    Effect of surface friction on ultrafast flame acceleration in obstructed cylindrical pipes

    Get PDF
    The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., “Flame Acceleration in Channels with Obstacles in the Deflagration-to-Detonation Transition,” Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between the obstacles, ΔZ, in the ranges 1/3 ≀ α ≀ 2/3 and 0.25 ≀ ΔZ/R ≀ 2.0, respectively. For these parameters, an impact of surface friction on flame acceleration is shown to be minor, only 1∌4%, slightly facilitating acceleration in a tube with ΔZ/R = 0.5 and moderating acceleration in the case of ΔZ/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the present work thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. While this result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion of an obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, where surface friction modifies the flame dynamics conceptually

    Synthesis of Carbon Nanofibers on Large Woven Cloth

    Get PDF
    This experimental study aims at the in situ growth of carbon nano-fibers (CNFs) on relatively large (25 × 30 cm2) single-layer carbon-fiber fabrics. It is shown that CNFs can be grown with the distribution potentially suitable for a future use in polymer-matrix composite materials. Details of tuning the catalyst deposition method and the CNF growth process are presented and analyzed. In particular, the Ni catalyst deposition method and the type of solvent are shown to strongly influence the uniformity of a CNF growth on carbon fibers, and sometimes even processibility of the whole specimen

    Quasi-steady stages in the process of premixed flame acceleration in narrow channels

    Get PDF
    The present paper addresses the phenomenon of spontaneous acceleration of a pre-mixed flame front propagating in micro-channels, with subsequent deflagration-to-detonation transition. It has recently been shown experimentally [M. Wu, M. Burke, S. Son, and R. Yetter, Proc. Combust. Inst. 31, 2429 (2007)], computationally [D. Valiev, V. Bychkov, V. Akkerman, and L.-E. Eriksson, Phys. Rev. E 80, 036317 (2009)], and analytically [V. Bychkov, V. Akkerman, D. Valiev, and C. K. Law, Phys. Rev. E 81, 026309 (2010)] that the flame acceleration undergoes different stages, from an initial exponential regime to quasi-steady fast deflagration with saturated velocity. The present work focuses on the final saturation stages in the process of flame acceleration, when the flame propagates with supersonic velocity with respect to the channel walls. It is shown that an intermediate stage may occur during acceleration with quasi-steady velocity, noticeably below the Chapman-Jouguet deflagration speed. The intermediate stage is followed by additional flame acceleration and subsequent saturation to the Chapman-Jouguet deflagration regime. We elucidate the intermediate stage by the joint effect of gas pre-compression ahead of the flame front and the hydraulic resistance. The additional acceleration is related to viscous heating at the channel walls, being of key importance at the final stages. The possibility of explosion triggering is also demonstrated

    Estimations of electron-positron pair production at high-intensity laser interaction with high-Z targets

    Get PDF
    Electron-positron pairs' generation occuring in the interaction of 101810^{18}-102010^{20}~W/cm2^2 laser radiation with high-Z targets are examined. Computational results are presented for the pair production and the positron yield from the target with allowance for the contribution of pair production processes due to electrons and bremsstrahlung photons. Monte-Carlo simulations using the PRIZMA code confirm the estimates obtained. The possible positron yield from high-Z targets irradiated by picosecond lasers of power 10210^2-10310^3~TW is estimated to be 10910^9-101110^{11}

    Efficient Inhibition of Collagen-Induced Platelet Activation and Adhesion by LAIR-2, a Soluble Ig-Like Receptor Family Member

    Get PDF
    LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 ”g/ml) and high shear rate (1500 s−1; IC50 = 30 ”g/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2ÎČ1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis
    • 

    corecore