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ABSTRACT
The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., “Flame Acceleration in Channels with Obstacles in
the Deflagration-to-Detonation Transition,” Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including
those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface
conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is
scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with
an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between
the obstacles, ∆Z, in the ranges 1/3 ≤ α ≤ 2/3 and 0.25 ≤ ∆Z/R ≤ 2.0, respectively. For these parameters, an impact of surface friction on flame
acceleration is shown to be minor, only 1∼4%, slightly facilitating acceleration in a tube with ∆Z/R = 0.5 and moderating acceleration in the
case of ∆Z/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the present
work thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. While
this result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion of
an obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, where
surface friction modifies the flame dynamics conceptually.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5087139

I. INTRODUCTION

Among the geometries associated with fast flame acceleration
and the deflagration-to-detonation transition (DDT) scenarios,1–9

obstructed cylindrical tubes provide fastest acceleration.10 While
flame propagation through the obstacles is oftentimes associated
with turbulence or shocks11 or hydraulic resistance,12 Bychkov
et al.13–16 identified a conceptually laminar, shockless mechanism
of ultrafast acceleration in semi-open channels or cylindrical tubes
equipped with a comb-shaped array of obstacles. The Bychkov
mechanism is illustrated in Fig. 1, and it is devoted to a powerful

jet-flow along the centerline of a channel or a tube, generated by a
cumulative effect of delayed combustion in the “pockets” between
the obstacles. According to the analytical formulation,14 substanti-
ated by the comprehensive numerical simulations,14,17 a premixed
flame front accelerates exponentially as U tip/SL ≈ Θ exp(στ), where
U tip ≡ dZtip/dt is the velocity of the flame tip in the laboratory
reference frame, SL is the unstretched laminar burning velocity,
Θ ≡ ρf /ρb is the thermal expansion ratio, τ ≡ tSL/R is the scaled
time, R is the radius of the tube, and the scaled exponential accel-
eration rate σ in the cylindrical axisymmetric geometry is given
by14
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FIG. 1. The Bychkov mechanism of ultrafast flame acceleration in obstructed pipes
(a half of the pipe is shown).

σ = σ(Θ,α) = 2
(Θ − 1)
(1 − α)

[1 +
1

2(Θ − 1)
], (1)

where α is the blockage ratio. This acceleration is extremely pow-
erful indeed, exceeding that due to wall friction18 or combustion
instabilities.6 Moreover, the quantity σ grows with α and Θ, thereby
promoting flame acceleration; σ drastically depends on α, but it does
not depend on R, which makes this acceleration mechanism scale-
invariant (Reynolds-independent) and, thereby, relevant to various
scales: from micro-combustors to very large mining and subway
tunnels.

The Bychkov model13–17 adopted a set of simplifications,
such as free-slip walls. However, slip walls are relevant for a non-
continuum flow, while the physical boundary conditions are non-
slip as far as the continuum assumptions are valid. Consequently, the
Bychkov model needed to be validated in terms of its applicability to
the practical reality. Indeed, it was shown that both surface friction18

and thermal (cold and hot) wall conditions19 play an enormous role
in unobstructed pipes. Will it be the case in the obstructed ones?
Here we are answering this question. While Ugarte et al.16 have
recently shown a minor effect of the outer isothermal walls as com-
pared to the adiabatic ones, in obstructed pipes; in the present work
we have compared slip and nonslip surfaces and came to the same
conclusion.

II. NUMERICAL METHOD
We have performed the computational simulations of the

hydrodynamic and combustion equations including transport pro-
cesses (thermal conduction, diffusion, and viscosity), full compress-
ibility and an Arrhenius chemical kinetics. The basic equations in
the cylindrical geometry read:

∂ρ
∂t

+
1
r
∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0, (2)

∂

∂t
(ρur) +

∂

∂z
(ρuzur − ζzr) +

1
r
∂

∂r
[r(ρu2

r − ζrr)] +
∂P
∂r

+
1
r
ζθθ = 0,

(3)

∂

∂t
(ρuz) +

∂

∂z
(ρu2

z − ζzz) +
1
r
∂

∂r
[r(ρuzur − ζzr)] +

∂P
∂z

= 0, (4)

∂ε
∂t

+
∂

∂z
[(ε + P)uz − ζzzuz − ζzrur + qz]

+
1
r
∂

∂r
[r((ε + P)ur − ζrrur − ζzruz + qr)] = 0, (5)

∂

∂t
(ρY) +

1
r
∂

∂r
(rρurY − r

µ
Sc

∂Y
∂r

) +
∂

∂z
(ρuzY −

µ
Sc

∂Y
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)

= −
ρY
τR

exp(−Ea/RuT), (6)

where Y is the mass fraction of the fuel mixture, ε = ρ(QY + CvT) +
ρ(u2

z + u2
r)/2 is the total energy per unit volume, with the energy

release in the reaction Q = CpTf (Θ − 1), specific heats at constant
pressure and volume,Cp andCv, pressure P, temperatureT, density ρ
and the radial and axial velocity components, ur and uz . Equation (6)
describes a one-step irreversible Arrhenius reaction of the first order,
with the activation energy Ea and the constant of time dimension τR.
The stress tensor ζαβ is given by

ζrr = µ(
4
3
∂ur
∂r

−
2
3
∂uz
∂z

−
2
3
ur
r
), ζzz = µ(

4
3
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),

(7)
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ur
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−

2
3
∂uz
∂z

−
2
3
∂ur
∂r

), ζrz = µ(
∂uz
∂r

+
∂ur
∂z

), (8)

and the energy diffusion vector qα takes the form

qr = −µ(
cP
Pr

∂T
∂r

+
Q
Sc

∂Y
∂r

), qz = −µ(
cP
Pr

∂T
∂z

+
Q
Sc

∂Y
∂z

), (9)

where µ ≡ ρν is the dynamic viscosity, being µf = 1.7 × 10−5kg/(m⋅s)
in the fuel mixture, and Sc and Pr are the Schmidt and Prandtl
numbers, respectively, with the Lewis number being their ratio,
Le = Sc/Pr. To avoid diffusional-thermal instability, similar to
Refs. 13–16, in the present work we took Le = Sc = Pr = 1. The
fuel mixture has initial temperature, Tf = 300 K, pressure, P = 1 bar,
and density, ρf = 1.16 kg/m3. The thermal expansion ratio is taken
to be Θ = 8, with the laminar flame speed being SL = 0.347 m/s,
which represents a near-stoichiometric methane-air mixture. The
initial speed of sound in the fuel mixture is c0 = 347 m/s, which
exceeds SL by a factor of 103, thereby making gasdynamics almost
incompressible at the initial stage of burning, with the Mach num-
ber associated with flame propagation being M0 ≡ SL/c0 = 10−3.
Then the thermal flame thickness can be defined, conventionally, as
Lf ≡ µf /ρf SLPr = 4.22 × 10−5 m.

FIG. 2. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for
α = 2/3, ∆Z/R = 1/4, and various R = 24 Lf and 36 Lf .
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FIG. 3. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 24 Lf , ∆Z/R = 1/4, and various α = 1/3, 1/2, and 2/3.

FIG. 4. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 24 Lf , α = 2/3 and various ∆Z/R = 1/4 and 1/2.

A flame propagates in a long cylindrical tube of radius R, with
one end open, the blockage ratio α and the spacing between two
neighboring obstacles ∆Z; see Fig. 1. This geometry is described
by the Reynolds number associated with flame propagation, Ref =
RSL/ν = R/PrLf = R/Lf . In the present work, we used ∆Z/R = 1/4,
1/2, 2; Ref = 12, 24; and α = 1/3, 1/2, 2/3. We employed adiabatic,
n ⋅ ∇T = 0, and either free-slip, n ⋅ u = 0, or non-slip, u = 0, surfaces

FIG. 6. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 24 Lf , α = 2/3 and various ∆Z/R = 1/4, 1/2, and 1.

FIG. 7. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 12 Lf , α = 1/3 and various ∆Z/R = 1/4, 1/2, and 1.

of the obstacles and of the pipe wall. Here n is a normal vector at
a surface. The absorbing (non-reflecting) boundary conditions are
adopted at the open end to prevent the reflection of the sound waves
and weak shocks. The left end of the free part of the tube is blocked,
while the right end is open, with the boundary conditions ρ = ρf ,

FIG. 5. The color temperature snapshots [in K] for burning
in an obstructed tube with free-slip (a) and non-slip (b) walls
for R = 24 Lf , α = 2/3, ∆Z = R/2, and taken at the same
scaled time instant τ = tSL/R = 0.15 in both cases.

AIP Advances 9, 035249 (2019); doi: 10.1063/1.5087139 9, 035249-3
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FIG. 8. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 36 Lf , α = 1/3, and ∆Z/R = 1.

P = Pf , and uz = 0 adopted there. The initial flame structure was
imitated by a Zeldovich-Frank-Kamenetsky-like solution for a hemi-
spherical flame front,14 ignited at the centerline, at the closed end
of the pipe. The computational grid consists of the 0.2 Lf × 0.2 Lf

square cells; this resolution has been extensively tested for conver-
gence in Ref. 14.

III. RESULTS AND DISCUSSION

We have compared the cases of free-slip and non-slip boundary
conditions for various R, ∆Z, and α. Specifically, the scaled flame tip
position Zf /R versus the scaled time τ = tSL/R is shown in Figs. 2–4,
with the free-slip and non-slip boundary conditions depicted by
the solid and dashed lines, respectively, in all plots. It is seen that
the impact of free-slip and non-slip surface boundary conditions
is minor as long as the obstacles spacing is small, ∆Z ≤ R/2, and
this is true for all α considered. Indeed, both the curves almost
coincide in the cases studied. A reasonable way to measure a rela-
tive deviation between the plots is calculating the following quantity
(in %):

E = ∣(Zf ,slip − Zf ,no−slip)/Zf ,no−slip∣ × 100. (10)

The result of Eq. (10) does not exceed 1 ∼ 4% for all the cases seen in
Figs. 2–4; surface friction slightly moderates flame acceleration for
∆Z = R/4, and very slightly promotes it for ∆Z = R/2. This result
certifies a minor impact of the free-slip/non-slip boundary condi-
tions and thereby justifies the Bychkov model of flame acceleration

FIG. 9. The color temperature snapshots
[in K] for burning in an obstructed tube
with free-slip (a) and non-slip (b) walls for
R = 36 Lf , α = 1/3, ∆Z/R = 1 and taken at
the same scaled time instant τ ≡ tSL/R =
0.225 in both cases.

FIG. 10. The color temperature snap-
shots [in K] for burning in an obstructed
tube with free-slip (a) and non-slip (b)
walls for R = 36 Lf , α = 1/2, ∆Z/R = 1 and
taken at the same scaled time instant τ
≡ tSL/R = 0.225 in both cases.

FIG. 11. The color temperature snap-
shots [in K] for burning in an obstructed
tube with free-slip (a) and non-slip (b)
walls for R = 36 Lf , α = 2/3, ∆Z/R = 1 and
taken at the same scaled time instant τ
≡ tSL/R = 0.225 in both cases.

AIP Advances 9, 035249 (2019); doi: 10.1063/1.5087139 9, 035249-4

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 12. The scaled flame tip position Zf /R versus the scaled time τ ≡ tSL/R for R
= 12 Lf , α = 1/3, ∆Z/R = 2.

FIG. 13. Overpressure ∆P across the flame front taken at the flame tip versus the
scaled time τ ≡ tSL/R for R = 12 Lf , α = 1/3, ∆Z/R = 2.

in obstructed pipes, which employs the free-slip surfaces of obsta-
cles and walls. The similarity of the color snapshots of Fig. 5 taken
at the scaled time instant τ = 0.15 leads to the same conclusion. This
result can be explained by the fact that the flow is mainly driven in
the axial direction such that the small obstacles spacing mitigates a
potential effect of surface fiction (if any). In fact, Ref. 16 suggested
the same conclusion with the same explanation when studying the

thermal boundary conditions at the walls and obstacles in obstructed
channels.

We also investigated what happened when the obstacles spac-
ing is increased. While in Figs. 6–8 we noticed that the results for
both free-slip and non-slip conditions almost coincide for a small
∆Z, ∆Z ≤ R/2, as discussed previously, the difference between the
results is observed when ∆Z = R. Additionally, the color snapshots
have been taken at time scaled instant τ = 0.225 from the simulations
for the free-slip and non-slip boundary conditions, as presented in
Figs. 9–11. It is seen that there is only a minor difference between
the free-slip and non-slip surfaces, with the flame tip being ∼1.5 R
ahead for the non-slip case. This result can potentially be attributed
to the fact that vortices in the pockets are barely in contact with the
walls.

We have also considered a wider spacing between the obsta-
cles, ∆Z = 2R, with a remarkable difference between the free-slip and
non-slip conditions observed in that case, as shown in Figs. 12–15.
Specifically, the time evolutions of the flame tip positions Zf and of
the overpressures ∆P across the flame front, taken at the flame tip,
are shown in Figs. 12 and 13, respectively. Figures 14 and 15 compare
the color representations for the vorticity, Fig. 14, and temperature,
Fig. 15. It is clearly seen that surface friction promotes flame accel-
eration, substantially, as compared to the free-slip condition: the
deviation given by Eq. (10) is ∼24% in that case. Comparing Fig. 14b
to 14a, one can attribute such a discrepancy to the formation of high
vorticity in the pockets between the obstacles in the case if large ∆Z.
Obviously, vorticity evolves differently with free-slip and non-slip
surfaces, with a stronger flow distortion in the latter case, leading
thereby to faster flame acceleration. It is recalled, in this respect, that
the Bychkov model does not consider vorticity and, therefore, it is
probably not fully applicable here. Moreover, the very approach of
tightly-packed obstacles, ∆Z ≪ R, Fig. 1, considered in the Bychkov
model, is definitely broken when ∆Z exceeds R. In fact, an inapplica-
bility of the Bychkov formulation for ∆Z > R has been shown even in
the pilot studies13,14 as well as later, in the detailed analysis.16 Qual-
itatively, we arrive to the same conclusions by means of the color
snapshots in Fig. 15. Indeed, while a resemblance between Figs. 5a
and 5b was evident, with the flame tip at Zf ∼ 27 R in both figures, a
serious difference between the flame tip positions in Figs. 15a and
15b is clearly seen, with the flame tip being ∼19 R ahead for the
non-slip case.

FIG. 14. The color θ-vorticity snapshots
[in sec -1] for burning in an obstructed
tube with free-slip (a) and non-slip (b)
walls for R = 12 Lf , α = 1/3, ∆Z/R = 2 and
taken at the same scaled time instant τ
≡ tSL/R = 0.36 in both cases.
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FIG. 15. The color temperature snap-
shots [in K] for burning in an obstructed
tube with free-slip (a) and non-slip (b)
walls for R = 12 Lf , α = 1/3, ∆Z/R = 2 and
taken at the same scaled time instant
τ ≡ tSL/R = 0.36 in both cases.

IV. CONCLUSIONS
We have investigated flame propagation in obstructed cylindri-

cal tubes. It is shown that for small and moderate spacing between
the obstacles, an impact of surface friction on flame acceleration is
minor, 1∼4%, slightly facilitating acceleration in a tube with ∆Z/R
= 1/2 and moderating acceleration in the case of ∆Z/R = 1/4. How-
ever, the situation is different in the case of a wide spacing. Earlier,
a minor effect of the isothermal surfaces as compared to the adia-
batic ones was also demonstrated.16 With the fact that the Bychkov
model employed slip walls whereas the physical boundary condi-
tions are non-slip as far as the continuum assumption is valid, the
present work thereby justifies the Bychkov approach and makes its
wider applicable to the practical reality; but only within its valid-
ity limit. Indeed, at a large spacing, ∆Z ≫ R, the Bychkov model is
not applicable anyway, and vorticity comes to play and show dif-
ferent behaviors for the free-slip and non-slip surfaces. In fact, we
anticipated such an outcome that the effect of surface friction is gen-
erally minor (but only as long the spacing between the obstacles is
small). It can be explained by a fact that flame propagation is mainly
driven by its spreading in the unobstructed portion of an obstructed
tube (i.e. far from the tube wall). However, there was a need to jus-
tify this hypothesis because surface friction may potentially play a
significant role as it does in other geometries such as unobstructed
tubes.18 Here we proved this is not the case for an obstructed tube.
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