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The present paper addresses the phenomenon of spontaneous acceleration of a pre-
mixed flame front propagating in micro-channels, with subsequent deflagration-to-
detonation transition. It has recently been shown experimentally [M. Wu, M. Burke,
S. Son, and R. Yetter, Proc. Combust. Inst. 31, 2429 (2007)], computationally [D.
Valiev, V. Bychkov, V. Akkerman, and L.-E. Eriksson, Phys. Rev. E 80, 036317
(2009)], and analytically [V. Bychkov, V. Akkerman, D. Valiev, and C. K. Law, Phys.
Rev. E 81, 026309 (2010)] that the flame acceleration undergoes different stages,
from an initial exponential regime to quasi-steady fast deflagration with saturated
velocity. The present work focuses on the final saturation stages in the process of
flame acceleration, when the flame propagates with supersonic velocity with respect
to the channel walls. It is shown that an intermediate stage may occur during acceler-
ation with quasi-steady velocity, noticeably below the Chapman-Jouguet deflagration
speed. The intermediate stage is followed by additional flame acceleration and sub-
sequent saturation to the Chapman-Jouguet deflagration regime. We elucidate the
intermediate stage by the joint effect of gas pre-compression ahead of the flame
front and the hydraulic resistance. The additional acceleration is related to viscous
heating at the channel walls, being of key importance at the final stages. The pos-
sibility of explosion triggering is also demonstrated. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4819885]

I. INTRODUCTION

In the process of deflagration-to-detonation transition (DDT) a (deflagration) flame front could
accelerate spontaneously with a velocity increase by up to 3 orders of magnitude. This process could
then trigger an explosion in the fresh fuel mixture, which subsequently evolves into detonation.1–8 The
phenomena of flame acceleration and DDT play the key role in safety issues,3, 5, 6 pulse-detonation
engines,4, 5 astrophysical events,9, 10 and advanced materials.11–13 A common configuration for DDT
studies is that of an accelerating flame front propagating in a tube/channel from a closed end to an
open one.

The first qualitative explanation of the flame acceleration was suggested by Shelkin more than
70 years ago,1 with the basic idea involving a positive feedback between expansion of the burned
gas and a strongly non-uniform profile of the gas velocity due to the non-slip boundary conditions at
the wall. Since then DDT was observed in numerous experiments,3–6, 14–17 although, there was little
progress in a quantitative theoretical understanding of the process because of complications related
to turbulent burning. Only recently, starting with the notion of laminar DDT, the qualitative Shelkin
mechanism has been developed into a quantitative analytical theory,18, 19 having been validated
through extensive numerical simulations. Additional effects of hydraulic resistance, gas retardation
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at the rough walls, and viscous drag in relation to DDT have been also discussed.20–23 An important
theoretical prediction of Refs. 18 and 19 was the fast flame front acceleration in narrow channels.
Following this prediction, experiments on DDT in micro-channels with diameters about 1 mm have
been performed24–27 using ethylene-oxygen mixtures. In addition to supporting the main theoretical
predictions, the experiments also demonstrated several additional features beyond the scope of
the theory, such as the possibility of fast steady or quasi-steady deflagration propagating with
supersonic speed with respect to the channel wall. Since the theory18, 19 was restricted to the initial
incompressible stage of flame acceleration, it did not account for compressibility effects.

To clarify the transition from the initial to final stages of the flame acceleration process,
an extensive numerical study was subsequently undertaken28 covering three orders of magnitude
variation in the flame front velocity, with the flame accelerating from a realistically small initial
velocity (corresponding to the initial Mach number Ma ∼ 10−3) to supersonic speed in the laboratory
reference frame. It was shown that the flame acceleration undergoes three distinctive stages: (1) initial
exponential acceleration in a quasi-isobaric regime in agreement with Refs. 18 and 19; (2) almost
linear increase in the flame speed to supersonic values; and (3) saturation to a quasi-steady high-speed
deflagration velocity, which is eventually followed by explosion of the fuel mixture and consequently
DDT. The role of gas compressibility in moderating flame acceleration in smooth channels has
been also demonstrated analytically, with the assumption of a small but finite Mach number, in
Ref. 29. When analyzing the numerical results of Ref. 28 related to the end of the acceleration and
prior to detonation initiation, one should naturally expect saturation of the deflagration speed to the
limiting Chapman-Jouguet (CJ) value, UCJ, predicted by the classical theory.30, 31 Surprisingly, the
saturation velocity obtained in Ref. 28 was noticeably smaller than the CJ deflagration speed, being
∼0.6UCJ. Experimental results24–27 also demonstrated the possibility of a lower saturation velocity
as compared to the CJ deflagration speed, thus supporting the numerical prediction. Moreover,
results from a number of studies showed step-wise flame acceleration in the final stages,32, 33 with an
intermediate “plateau” in the evolution of the flame front velocity, which is followed by additional
acceleration. Since such a step-wise flame acceleration would lead to generation of pressure/shock
waves by the flame, fuel pre-heating and, consequently, DDT run-up distance, all these problems
require further study of the intermediate quasi-steady stages of flame acceleration.

The goal of the present work is to study computationally the final stages in the process of flame
acceleration and DDT in smooth channels. Focusing mainly on the final stages, we consider relatively
large initial values of the Mach number, which implies smaller maximum distance between the flame
front and the leading shock wave, thus reducing solution size and allowing for more comprehensive
parametric study as compared to Ref. 28. In contrast to the previous numerical studies, here we show
that saturation of the flame speed to the CJ deflagration velocity value occurs in two steps. First, we
obtain an intermediate quasi-steady saturation to values noticeably lower than the CJ deflagration
speed in agreement with the previous numerical results.28 We demonstrate that the intermediate
quasi-steady saturation regime is related to gas pre-compression and viscous stress at the channel
walls. We theoretically analyze the possibility of the intermediate quasi-steady saturation as the result
of gas pre-compression by the accelerating flame. The analysis accounts for strong dependence of
the acceleration rate on the thermal expansion ratio at the flame front, so that the acceleration stops
completely below a certain critical value of the expansion ratio.18, 19, 34 Second, after the intermediate
quasi-stationary regime, an additional acceleration of the flame front is observed with subsequent
saturation to the CJ deflagration regime. We emphasize that both the first and the second saturation
regimes develop prior to explosion of the fuel mixture and detonation initiation. We also demonstrate
the possibility of explosion and detonation triggering. The explosion develops in an essentially multi-
dimensional manner, with fast spontaneous reaction spreading along the walls, pushing rather strong
shocks and producing powerful hydrodynamic instabilities.

II. THEORETICAL MODEL OF THE QUASI-STEADY FLAME TIP VELOCITY

The intermediate quasi-stationary stage of the flame acceleration is a result of the coupling
of several mechanisms. In this section, we evaluate the role of one mechanism, namely, a strong
reduction of the expansion ratio with flame acceleration. The other factor is the hydraulic resistance
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FIG. 1. A flame shape in a channel with non-slip at the walls. Re = 13.3, scaled time instant SLt/h = 6.69; mark squeezing
of the figure along the z-axis is made for illustrative purposes.

due to viscous stress leading to momentum and energy loss, which was studied extensively in
Refs. 20 and 21 and references therein.

We consider a flame front propagating in a 2D, planar semi-infinite channel (i.e., with one end
closed) of half-width h, with non-slip adiabatic walls, as illustrated in Fig. 1. According to the incom-
pressible analysis of Refs. 18 and 19, with further development in Ref. 34, flames in tubes/channels
can accelerate only if the thermal expansion ratio �, defined as unburnt-to-burnt density ratio ρu/ρb

(equal to the burnt-to-unburnt temperature ratio Tb/Tu for small laminar flame speeds), exceeds a
certain critical value, being �C = 3 for the planar semi-infinite channel under consideration. At
the initial stage of this acceleration, the flame-generated flow is almost incompressible, and the
acceleration is exponential18

Uw/SL ∝ exp (σ SLt/h) , (1)

where Uw is the total burning rate and SL is the unstretched laminar flame speed. In the limit of
strong acceleration associated with the large thermal expansion � � 1, the acceleration rate may be
calculated using a simple analytical formula18

σ = (Re − 1)2

4Re

[√
1 + 4Re�

(Re − 1)2
− 1

]2

, (2)

where Re = RSL/ν is the Reynolds number related to the flame propagation and ν is the kinematic
viscosity. However, for the present work the limit of relatively weak acceleration rate is most relevant.
In that case, the acceleration rate has to be found numerically from the equation18

√
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σ
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(3)
Figure 2 presents the dependence of the acceleration rate on the expansion factor found as a numerical
solution to Eq. (3). We stress that the numerical solution predicts the existence of a minimum value
of the thermal expansion ratio �, at which acceleration is possible. Such a limiting value is missing
in the simplified analytical formula of σ given by Eq. (2). Though the accelerating flame is strongly
curved, at sufficiently large scales its propagation may be treated as a motion of a quasi-1D, semi-
transparent piston,35 rendering the entire problem to be quasi-1D as well.

While compressibility and viscous heating are of minor importance at the initial stage of the
process, they subsequently come to play with the flame acceleration, as the accelerating flame
front generates compression/shock waves in the fuel mixture. The compression waves reduce the
instantaneous mean thermal expansion ratio θ at the flame front as compared to its initial value
θ0 = �, see Ref. 29, thereby reducing the acceleration rate σ as well, see Eq. (2). Eventually, θ

approaches the critical value, θ = �C = 3, which reduces the acceleration rate strongly and may
result in the first quasi-steady stage, with a fast, near-sonic deflagration speed. It is noted, however,
that such a primary, quasi-steady “plateau” on the velocity evolution is limited in time, because
viscous heating in the transverse (radial) direction becomes dominant at a certain stage,33 hence
making the quasi-1D, self-similar formulation invalid along with cessation of the initial quasi-steady
plateau in the velocity evolution. Consequently, the flame front accelerates again and approaches a
secondary plateau, which corresponds to the CJ deflagration velocity and lasts until the explosion
onset.
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Θ

σ

FIG. 2. Dependence of the acceleration rate on the expansion ratio according to theoretical analysis.18 Solid line: Eq. (3),
dashed line: Eq. (2) obtained within limit of large thermal expansion.

To develop a quantitative model for this mechanism, we first neglect viscous heating, focusing
on gas compression, and assume the flow to be isentropic, which holds with a good accuracy at
the initial stages of flame acceleration. The instantaneous scaled temperature increase ahead of the
flame is35

ϑcomp = T

Tu
=

[
1 + γ − 1

2
(� − 1)Maw

]2

, (4)

where Maw = Uw/cs is the instantaneous Mach number related to the flame propagation with respect
to the unburnt gas, cs is the initial sound speed in the fuel mixture, and γ = C p/Cv is the adiabatic
index. The flame acceleration stops if the instantaneous temperature ratio becomes as low as the
critical value:

�C = Tb/T = �[
1 + γ−1

2 (� − 1)Maw

]2 ,

which yields

Maw = 2

√
�/�C − 1

(γ − 1)(� − 1)
, (5)

with the saturation Mach number for the flame tip in the laboratory frame Matip being

Matip = �C Maw = 2�C

√
�/�C − 1

(γ − 1)(� − 1)
. (6)

In particular, for � = 8, �C = 3, and γ = 1.4, the model predicts intermediate saturation for
Maw ≈ 0.45 and Matip = �C Maw ≈ 1.35. It is noted that the saturation of the flame velocity in
Ref. 28 has been obtained for Matip ≈ 2.0 and the same initial expansion ratio � = 8, with the CJ
deflagration speed corresponding to MaCJ,tip ≈ 2.7.

It is noted that the above estimations are viable only for large Reynolds numbers, i.e., for
sufficiently wide channels with negligible viscous heating at the channel wall. For narrower channels,
we have to modify the model incorporating viscous heating in the instantaneous average temperature
rise ahead of the flame in the form

T

Tu
= (1 + 〈ϑvisc〉)ϑcomp, (7)
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where 〈ϑvisc〉 denotes contribution to the gas pre-heating due to viscous stress averaged over the
channel width. The scaled temperature profile near the channel wall is given by33

ϑ (ξ ) = (γ − 1)Pr (� − 1)2η2

2(2 − Pr )(η − 1)2
Maw

2

[√
2

Pr
exp

{√
2Prη (ξ − 1)

}
− exp {2η (ξ − 1)}

]
, (8)

which can be integrated over the channel width as

〈ϑvisc〉 =
∫ 1

0
ϑ(ξ )d(ξ ) = (γ − 1)Pr (� − 1)2η2

2(2 − Pr )(η − 1)2
ψ Maw

2, (9)

with an auxiliary factor

ψ = 1 − exp (−√
2Prη)

Prη
− 1 − exp (−2η)

2η
. (10)

Here, ξ = x/h is the scaled coordinate normal to the channel wall, η = √
σ Re characterizes

the curvature of the flame shape, and Pr is the Prandtl number of the unburnt gas. Substituting
Eqs. (4), (9), and (10) into Eq. (7), taking into account that T/Tu = �/�C in the steady regime (with
�C = 3), and dropping terms of the third and higher orders of Maw, we obtain an equation for the
steady value of Maw:

Ma2
w

[
(γ − 1)2(� − 1)2

4
+ (γ − 1)Pr (� − 1)2η2

2(2 − Pr )(η − 1)2
ψ

]
+Maw(γ − 1)(� − 1) + (1 − �/�C ) = 0. (11)

For � = 8–14, Re = 0–50, relevant to our studies, Eq. (11) has one positive and one negative root,
with the former being

Maw = − (γ − 1)(� − 1)

2A
+

√
(γ − 1)2(� − 1)2

4A2
− 1 − �/�C

A
, (12)

where

A = (γ − 1)2(� − 1)2

4
+ (γ − 1)Pr (� − 1)2η2

2(2 − Pr )(η − 1)2
ψ. (13)

Consequently, the Mach number relevant to the flame tip in the laboratory frame is

Matip = �C Maw = −�C (γ − 1)(� − 1)

2A
+ �C

√
(γ − 1)2(� − 1)2

4A2
− 1 − �/�C

A
. (14)

Generally speaking, the narrower is the channel, the greater is the contribution of viscous heating
to the instantaneous expansion ratio. For the range of Re employed in the present numerical sim-
ulations, viscous heating produces only a minor modification of the instantaneous expansion ratio
at the initial acceleration stage, and a relatively small modification to the saturation value of Matip,
see Sec. IV for details. It is expected that the relative contribution of the viscous heating at the wall
should be larger in cylindrical configuration as compared to planar geometry. It is noted that the
above model is based on the “critical density ratio” concept of Ref. 34 for the hypothetical steady
flame propagation, which employs the assumption of an established Poiseuille flow in the channel,
while in reality the Poiseuille velocity profile may not fully develop as the critical expansion ratio
is attained. It is also noted that Eq. (8) is derived in the low-Mach limit33 and assumes exponential
flame acceleration, which is no longer valid at the very end of flame acceleration and at the satura-
tion stage; the subsequent process is discussed in Sec. IV. For all these reasons, the present analysis
should be treated as an assessment rather than a rigorous theory. As we will see from the numerical
results, the compression waves do reduce the thermal expansion at the flame considerably, from
θ0 = � = 8 to θ = 5, and the deviation from the critical value drops even stronger, from
� − �C = 5 to θ − �C ≈ 2. Nevertheless, the reduction is not as strong as required by the
theoretical model for the saturation. Therefore, in order to explain the intermediate quasi-saturation
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regime one should look for additional mechanisms that weaken the acceleration. In this sense,
another possible candidate is the hydraulic resistance, considered, e.g., in Ref. 21.

III. BASIC EQUATIONS AND NUMERICAL APPROACH

We perform numerical simulation of the 2D Cartesian hydrodynamic and combustion equations
including transport and chemical kinetics. In tensor form the governing equations are

∂

∂t
ρ + ∂

∂xi

(
ρui

) = 0, (15)

∂

∂t

(
ρui

) + ∂

∂x j

(
ρui u j + δi j P − τi j

) = 0, (16)

∂

∂t

(
ρε + 1

2
ρui u j

)
+ ∂

∂xi

(
ρui h̄ + 1

2
ρui u j u j + qi − u jτi j

)
= 0, (17)

∂

∂t
(ρY ) + ∂

∂xi

(
ρui Y − μ

Sc

∂Y

∂xi

)
= −ρY

tR
exp

(−Ea/R0T
)
, (18)

where Y is the fuel mass fraction, ε = QY + CvT is the internal energy, h̄ = QY + C pT is the
enthalpy, Q is the chemical energy release, and Cv and Cp are the heat capacities at constant volume
and pressure, respectively. δij is the Kronecker delta. The stress tensor τ ij and the energy diffusion
vector qi are

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (19)

qi = −μ

(
C p

Pr

∂T

∂xi
+ Q

Sc

∂Y

∂xi

)
, (20)

where μ is the dynamic viscosity, and Pr and Sc are the Prandtl and Schmidt numbers, respectively.
We take unity Lewis number Le ≡ Pr/Sc = 1, with Pr = Sc = 0.75. The dynamical viscosity is
μ = 1.7 × 10−5 N s/m2. The fuel-air mixture and burnt gas are assumed to be perfect gases with a
constant molar mass m = 2.9 × 10−2 kg/mol, with Cv = 5R0/2m, Cp = 7R0/2m, i.e., the adiabatic
index γ = C p/Cv = 1.4, and the equation of state

P = ρR0T/m, (21)

where R0 ≈ 8.31 J/(mol K) is the universal gas constant. We consider a single-step irreversible
Arrhenius reaction of the first order with an activation energy Ea and a characteristic time tR. In our
simulations we took E/R0Tu = 32 in order to have better resolution of the reaction zone. The factor
tR was adjusted to obtain a particular value of the unstretched laminar flame speed SL by solving
the associated eigenvalue problem. We take the initial density, temperature, and pressure of the fuel
mixture as ρu = 1.16 kg/m3, Tu = 300 K, and Pu = 105 Pa, respectively, with the thermal expansion
ratio � = ρu/ρb = 8 and 14. The flame thickness is conventionally defined as

δL ≡ μ

Prρu SL
.

It is noted that δL is just a mathematical parameter of length dimension related to the flame front,
while the effective flame thickness can appear considerably larger, see Ref. 36.

We take a rather large initial Mach number Ma = SL/cs = 10−2 to achieve the saturation of
the flame velocity at shorter length and time scales as compared to that in Ref. 28. Such a value of
the Mach number may be attributed, for example, to hydrogen-oxygen flames. Besides, numerous
computational studies of DDT employ even larger values of the Mach number, falling in the range
0.05–0.1, in order to simplify the numerical task of DDT modeling, see, e.g., Refs. 33 and 37–39.
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We employ the moderate values of the channel width, 2h = 10δL–35δL , which are comparable to the
values used in previous studies. The choice of the channel width implies that the Reynolds numbers
related to the planar flame velocity are in the range Re = SLh/ν = h/δLPr = 6.67–23.33. At the same
time, the Reynolds number related to the flow, Ref = 〈uz〉2h/ν, may be several orders of magnitude
larger due to flame acceleration and thermal expansion of the burning gas.

We assume non-slip and adiabatic boundary conditions at the channel walls: u = 0 and
n · ∇T = 0, where n is the unit normal vector at the walls. At the open end, non-reflecting boundary
conditions are used. As initial conditions, we used planar flame “ignited” at the closed end of the
channel, with the structure given by the analytical solution of Zel’dovich and Frank-Kamenetskii:2, 40

T = Tu + Tu(� − 1) exp [− (z − z0) /δL ] , if z > z0, (22)

T = �Tu, if z < z0, (23)

Y = (Tb − T )/(Tb − Tu), P = Pu, ux = 0, uz = 0. (24)

Here, z0 denotes the initial flame position.
In our simulations, we used a 2D Cartesian hydrodynamic Navier-Stokes code adapted for

parallel computation.41 We used mesh with variable resolution in order to take into account the
growing distances between the channel end, the accelerating flame, and the shocks, and to resolve
both chemical and hydrodynamic spatial scales. Typical computational resources for one such
simulation required up to 104 CPU-hours, which required the use of parallel calculations.

We used a rectangular grid with the grid walls parallel to the coordinate axes. The sketch of
the calculation grid could be found in Refs. 28 and 33. The channel length exceeds the channel
width significantly, reaching 104 R at the end of the simulation runs. To reduce the computational
time, we made the grid spacing non-uniform along the z-axis with the zones of fine grid around the
flame and leading shock fronts. In the flame and shock wave domains the grid size in the z-direction
was, correspondingly, 0.25δL and 0.5δL for the main calculation runs, which allowed us to resolve
the internal structure of the flame and shock waves. Outside the region of fine grid the mesh size
grows gradually with 2% change in size between the neighboring cells. In order to keep the flame
and shock waves in the zone of fine grid we implemented periodical mesh reconstruction during the
calculation run. Splines of the third order are used for re-interpolation of the flow variables during
periodic grid reconstruction to preserve second-order accuracy of the numerical scheme.

IV. SIMULATION RESULTS AND DISCUSSION

A planar flame front ignited at the closed end was used as the initial condition, see Eqs. (22)–
(24), in order to focus on the critical expansion ratio phenomenon and CJ deflagrations, and to
eliminate the influence of precursor acceleration, as will be discussed further.

Figure 3 shows the profiles of the scaled velocity evolution for � = 8 and the range of
Re = 6.67–20.0. Each velocity profile shows an intermediate (first saturation) stage with stationary
velocity considerably below the CJ deflagration velocity, followed by additional acceleration and
subsequent saturation to the CJ deflagration regime (second saturation). Each velocity graph is shown
up to the instant of detonation onset; at certain flow parameters (e.g., for Re = 6.67) the explosion
and detonation start relatively fast. The flame accelerates according to the Shelkin mechanism
until it reaches the first saturation stage. The additional acceleration and velocity rise after the first
saturation stage are attributed to pre-heating of the fuel mixture due to viscous stress at the wall.
As shown in Ref. 33, the effect of viscous heating is of lesser importance at the initial stages of
flame acceleration (as low as Ma2 � 1), although, this mechanism starts to dominate at the later
stages. As a result, the temperature of the fuel mixture at the adiabatic wall becomes noticeably
larger than that at the channel centerline. In particular, Fig. 4 shows (a) temperature and (b) velocity
distributions across the channel centerline just ahead of the flame tip for different time instants
SLt/h = 2.61, 7.65, 10.43, and 15.31. The velocity profiles demonstrate extremely strong shear
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FIG. 3. Velocity evolution for � = 8, Re = 6.67–20.0.

close to the walls, which is the source of viscous stress and heating. The strong velocity shear is one
of the key elements in the Shelkin mechanism of flame acceleration, see the quantitative theory of
the process in Refs. 18 and 19.

Figure 5 presents the temperature evolution at the channel centerline and at the wall (measured at
a distance h ahead of the flame tip) for Ma = 0.01 and Re = 13.3. It is seen that the temperature at the
channel centerline is in sync with the velocity evolution, while the temperature at the wall increases
more monotonically. In order to demonstrate the effect of the role of the heating due to viscous
stress more evidently, the temperature difference between the wall and the centerline is depicted
versus the instantaneous flame tip Mach number in the laboratory frame in Fig. 6. Comparison of the
numerical results and the theoretical predictions for the temperature at the channel centerline shows
good agreement in spite of the simplifications adopted in the theory, thus supporting the isentropic
approximation employed in the theoretical model. In agreement with the theoretical predictions, the
heating due to viscous stress at the wall is minor before the flame reaches the first saturation stage
(i.e., before Mach number reaches the value 1.8–1.9 in Fig. 6, corresponding to the normalized time
instant ∼5–6SLt/h in Fig. 5); however, it continuously becomes prevailing afterwards. From Fig. 6,
we observe a strong correlation between the onset of both saturation stages and the increasing role of
viscous heating. At the same time, the instantaneous density drop and temperature jump at the flame
front obtained from the numerical simulation indicate certain shortcomings of the present theoretical

FIG. 4. (a) Temperature and (b) velocity profiles across the channel centerline ahead of the flame tip for time instants
SL t/h = 2.61, 7.65, 10.43, and 15.31. The solid line in plot (b) is given by Eq. (8) of Ref. 18.



096101-9 Valiev et al. Phys. Fluids 25, 096101 (2013)

FIG. 5. Temperature evolution at the channel centerline and walls for � = 8, Re = 13.3.

model. In particular, Fig. 7 shows the density drop and temperature jump at the flame front to be
about θ ≈ 5 at the time interval of intermediate quasi-saturation, SLt/h = 5–7. Though the attained
value is much lower than the initial density drop � = 8, it is nevertheless noticeably larger than the
critical value �C = 3 predicted by the theory. As discussed in Sec. II, other physical mechanisms,
e.g., hydraulic resistance, may lead to velocity saturation at higher values of the expansion ratio.

The flame speed at the second saturation regime is close to the physical limit of CJ deflagration
speed,30, 31 which is subsonic with respect to the fuel mixture ahead of the flame and supersonic in
the laboratory frame. The turbulent high-speed flames observed experimentally and often referred
to as “fast flames”5, 42 may be also associated with this regime. Figure 8 shows the first and second
saturation velocity values for various Reynolds numbers for � = 8. The dependence of Maw on
Re given by Eq. (14) for � = 8 is plotted in Fig. 8 by the dashed-dotted line. The first and second
saturation velocities obtained in the numerical simulations are shown by triangles and squares,
respectively. It is seen that the first (intermediate) saturation stage lies considerably lower than the
CJ deflagration velocity, while the second saturation velocity is close to it for all Reynolds numbers.
It is also observed that Eqs. (12)–(14) predict slightly lower first saturation velocity for lower Re

FIG. 6. Normalized temperature difference between the wall and the centerline versus the instantaneous flame tip Mach
number, Re = 13.3.
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ρ ρ

Θ

FIG. 7. Evolution of density and temperature drops at the flame front at the channel centerline, Re = 13.3.

as compared to the simulation results. For sufficiently large values of the Reynolds number Re, the
prediction of Eq. (14) lies between those of Eq. (6) (Usat,tip/SL ≈ 1.35) and the numerical results
(Usat,tip/SL ≈ 1.7 for Re = 23.3). It is noted that SL may be modified by increasing the mixture
temperature, while Eqs. (6) and (12) do not account for the change of SL due to pre-heating. The
second (final) saturation velocity approaches the CJ deflagration velocity with increasing channel
width, which can be explained by the decreasing heating effect due to viscous stress in the boundary
layer. It was recently shown that for shock waves and stable detonations in narrow channels the mean
propagation velocity decreases for smaller channel widths due to dissipative effects at the walls.43, 44

We point out that the recent experiments in channels with obstacles32 also show an intermediate
stage of flame acceleration with quasi-stationary flame velocity similar to the present numerical
modeling. The authors of Ref. 32 attributed this intermediate stationary velocity to interactions
between leading shocks and flame. In addition, similar phenomenon was observed in the work on
flame acceleration in obstructed channels45 for certain channel blockage ratios by carrying out the
simulation long enough to obtain fast near-CJ deflagrations. It is also noted that the notion of critical
expansion ratio was first introduced in the experimental work of Ref. 46, where it was shown that

FIG. 8. Dependence of saturation velocities on Re for the first and second stages, � = 8.
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the value of the thermal expansion ratio determines the possibility of flame acceleration to near-
CJ deflagration speeds in channels with obstacles. For blockage ratios 0.3–0.6 in the cylindrical
tubes, the value of the critical thermal expansion ratio was experimentally found to lie in the range
�C = 3.5–4. It is interesting to note that this phenomenon is observed in the present simulations
with smooth non-slip walls, based on a purely hydrodynamical mechanism developed in Refs. 18,19,
and 34. Since the theory predicts the critical value �C = 3 for 2D channels being 1.5 times larger
than that for cylindrical tubes, �C = 2, the experimental results of Ref. 46 can be interpreted as
�C ≈ 5.5 for 2D channels, being quite in line with the present numerical simulations. The concept
of critical expansion ratio is also relevant to fuel-injection flashback safety of hydrogen-enriched
fuels. In particular, it was recently shown that the effect of gas expansion is related to the flashback
of premixed hydrogen-air flames in the boundary layer of a turbulent channel flow.47 The study of
Ref. 47 focused mainly on the influence of the Darrieus-Landau instability2, 30, 40, 48 on the flashback
process, however, for preheated fuels the expansion ratio is close to the theoretical predictions
for �C. Therefore, provided that preheating is low enough, the coupling of the non-slip boundary
conditions and gas expansion would affect the upstream flame propagation during flashback.

We stress that while the intermediate saturation of the flame velocity below the CJ value is
common, it is not a universal one. For example, our simulation for a higher initial value of the
expansion factor, � = 14, did not show such an intermediate saturation as shown in Fig. 9. Here
the first saturation stage is no longer distinctive, although for all Reynolds numbers, the velocity
evolution passes a noticeable flex point near Matip = 1.27. In Fig. 9, the flex point is related to a
strong decrease of the instantaneous expansion ratio θ approaching the critical value �C because of
the gas compression.

On the other hand, the flex-point in evolution of the accelerating flame velocity may be caused by
other physical mechanisms, which should be distinguished carefully. For example, Ref. 33 reported
a flex-point at the velocity evolution due to transition from the precursor flame acceleration to the
Shelkin acceleration mechanism as elucidated below. In experiments ignition is typically initiated as
a hemi-spherical flame ball rather than a planar flame. This may lead to considerable modification of
the flame velocity evolution at the very early stage of flame acceleration due to the so-called precursor
(or “finger”) flame acceleration.49, 50 Here we emphasize that the precursor flame acceleration is short
but powerful, being much stronger than the Shelkin acceleration during the period of its viability. To
illustrate the modification of the velocity evolution due to precursor acceleration in channels with
non-slip walls, the initial conditions in the forms of a flame ball and a planar front were compared in
Figure 4(b) of Ref. 33. It was observed that the velocity evolution undergoes a noticeable flex point

Θ=14

δ
δ

δ
δ

δ

FIG. 9. Velocity evolution for � = 14, h = 10δL –35δL .
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at a relatively early time, which resembles the saturation stages of Fig. 8. However, the nature of this
flex point is substantially different from the effects studied in the present paper. In contrast with the
CJ deflagration and velocity saturation due to attainment of the critical expansion ratio, the observed
velocity jump is related to the precursor acceleration of finger-shaped flames.49, 50 Unlike the late
stages investigated in the present work, the precursor flame acceleration effect can be distinguished
by the early time when it is observed. The normalized time of the local maximum of the flame
velocity evolution in the precursor acceleration is50

twall = ln �

� − 1
, (25)

which corresponds to the time when the skirt of the elongated flame touches the channel wall, and is
almost independent of the initial Mach number.50 For � = 8, the normalized time in planar geometry
predicted by Eq. (25) is twall ≈ 0.29. The normalized maximum velocity can be quite high for high
�, being equal to Umax/SL = �2 in the low-Mach number approximation. However, compressible
theory and simulations of Ref. 50 considerably modified this result, predicting a lower value of
Umax/SL for M0 = 0.04 as compared to low Mach numbers.

Finally, we discuss the development of explosion and detonation onset at the late stages of
flame acceleration. The flow remains laminar in the entire acceleration process, but at later times
explosion of the fuel mixture starts gradually with the signs of flow turbulization due to instabilities
similar to those discussed in Ref. 51 for Ma = 10−3. The flow becomes more complicated during
explosion and detonation triggering. We observe that in the case of realistic initial flame Mach number
(Ma = 10−2), explosion of the preheated gas at the walls starts rather slowly, without direct formation
of the detonation wave, as compared to, e.g., Ref. 37. The entire multi-dimensional picture of the
final stage of the DDT is presented in Fig. 10, which shows all elements of the flame dynamics at that
stage. The first snapshot shows the elongated flame front at the very beginning of the explosion. It is

FIG. 10. (a) Numerical schlieren (based on density gradient) and (b) temperature field during deflagration-to-detonation
transition for planar geometry, Ma = 0.01, Re = 13.3 (h = 20.0δL). Z to X aspect ratio is 0.5. Time instants are equally
spaced in the range (19.2–19.41) SLt/h.
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seen that the explosion starts at the wall in agreement with the theory and simulations of Ref. 33. The
process is more pronounced in the second snapshot. Tongue of the explosion bursts along the wall
at high speed (second snapshot), catches up with the flame tip (third snapshot), and then leaves it far
behind engulfing the flame (fourth snapshot and on). The burning region at the stage of explosion
resembles the characteristic shape of an accelerating turbulent flame observed in experiments.5, 14, 15

We point out a strongly asymmetric explosion development, which differs noticeably from the
symmetric DDT process described in Ref. 51. Still, at present we do not see any physical process
responsible for losing or, respectively, keeping symmetry in DDT. Presumably, the choice between
symmetrical or asymmetrical explosion development is purely stochastic, related to instabilities
and turbulence arising in the DDT. Experimental studies typically describe the explosion process
as spreading of fast turbulent burning in a boundary layer. The last snapshot of Fig. 10 depicts the
system, which is not yet detonation, but is already the complex of supersonic flame and a shock wave.
It is seen from Fig. 10 that, as compared to the case of initial Mach number Ma = 0.001 reported in
Ref. 51, the explosion has similar duration in terms of SLt/h but is essentially non-symmetrical, in
that sense similar to that observed in Ref. 52.

Consequently, the process of flame acceleration studied herein is universal from the hydrody-
namic point of view, and it is adequately described even by using the simplified one-step Arrhenius
kinetics. In contrast, the process of explosion and detonation triggering is highly sensitive to the
details of the chemical kinetics, which has to include low-temperature reactions together with high-
temperature mechanism. For this reason, Fig. 10 can be considered as a qualitative illustration instead
of a qualitative analysis of the physical mechanism of the explosion.

V. SUMMARY

In this study, we have shown that the velocity evolution in the process of premixed flame
acceleration in narrow channels with non-slip adiabatic walls may undergo two quasi-stationary
stages: an intermediate stage with velocity noticeably below the CJ deflagration speed, to be followed
by additional flame acceleration, and a subsequent regime in which the flame velocity saturates to the
CJ deflagration. The existence of the intermediate quasi-steady stage is explained by the combined
effect of gas compression ahead of the flame front and the hydraulic resistance. The theoretical
analysis of the present study is based on the concept of critical expansion ratio: the acceleration
rate strongly depends on the thermal expansion ratio at the flame front,18, 19 with the acceleration
process ceasing completely for expansion ratios below a certain critical value �C. We estimate the
first quasi-steady saturation velocity of the flame tip in the laboratory frame with and without heating
due to viscous stress and compare the theoretical estimates with the numerical results. Numerical
simulations show that, in agreement with the theoretical predictions, heating due to viscous stress at
the wall is minor before the flame reaches the first quasi-steady stage and prevails afterwards. It is
demonstrated that the additional acceleration is related to viscous heating at the channel wall. The
deflagration-to-detonation transition and the development of explosion at the late stages of flame
acceleration is discussed qualitatively as well.

ACKNOWLEDGMENTS

The work at Umeå University was supported by the Swedish Research Council (VR), the Kempe
Foundation, and Stiftelsen Lars Hiertas Minne Grant No. FO2010-1015. Numerical simulations were
performed at High Performance Computer Center North (HPC2N), Umeå, Sweden, within SNAC
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APPENDIX: CONVERGENCE AND TEMPERATURE-DEPENDENT VISCOSITY TESTS

In order to check if the resolution is sufficient to study the flame acceleration process, we
performed resolution tests for Re = 6.67. The grid size in flame domain varied between 0.125δL,
0.25δL, 0.5δL, and 1δL. We checked the velocity of the flame tip at the various stages of flame velocity
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TABLE I. Resolution tests for Re = 6.67.

�zf/δL US1/SL �US1/SL US2/δL �US2/δL tDDT SL/h �tDDT SL/h

1.0 215.1 N/A 10.38
0.5 201.3 13.8 273.8 10.1 0.28
0.25 198.3 3.0 291.6 17.8 9.82 0.28
0.125 197.8 0.5 306.4 14.8 10.0 0.18

saturation. The resolution test results are presented in Table I, which shows good convergence of
the numerical solution at the flame saturation stage. Resolution tests also showed the tendency for
convergence for the instant of the onset of DDT with increasing resolution. It is noted that conver-
gence tests for DDT is a matter of controversy,39 with either the suggestion that it is not necessary
due to the stochastic nature of the phenomenon, or performing them only for the deflagration stage.
However, integrated values of interest, such as saturation velocities or pre-detonation times and
distances, should demonstrate convergence to be considered reliable.39

Notation: �zf/δL is the spatial step in the flame grid domain; US1/SL and �US2/δL are the flame
saturation velocities at the first and second steps, respectively (see Fig. 8); tDDTSL/h is the scaled
instant for the onset of DDT. �US1/SL and �US2/δL are the increments of �US1/SL and US2/δL

calculated in the table row i as �US1(i) = US1(i) − US1(i − 1) and �US2(i) = US2(i) − US2(i − 1).
The increment for tDDTSL/h is calculated in a similar manner. Resolution in the wave grid domain
is equal to �zw = 2 × �z f for each run.

Similar to the majority of previous works on the subject,28, 33, 45, 50 in the present paper we
consider a constant viscosity coefficient independent of temperature. In order to substantiate the use
of the constant viscosity, we performed additional test simulations for the temperature-dependent
viscosity μ(T) =μ0(T/Tu)0.7, with constants μ0 =μ and Tu defined in Sec. III. We kept the same value
of laminar burning velocity SL by solving the associated eigenvalue problem for the temperature-
dependent viscosity. It was found that the flame velocity evolution for the temperature-dependent
viscosity is qualitatively identical to that for the constant viscosity, exhibiting two quasi-steady
saturation stages and thus justifying the main result of the present study. It was also found that the
thermal flame thickness becomes larger for the case of temperature-dependent viscosity, with the
overall flame structure being qualitatively similar.
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