1,071 research outputs found

    Ultraviolet-Renormalon Reexamined

    Full text link
    We consider large-order perturbative expansions in QED and QCD. The coefficients of the expansions are known to be dominated by the so called ultraviolet (UV) renormalons which arise from inserting a chain of vacuum-polarization graphs into photonic (gluonic) lines. In large orders the contribution is associated with virtual momenta k2k^2 of order Q2enQ^2e^n where QQ is external momentum, ee is the base of natural logs and nn is the order of perturbation theory considered. To evaluate the UV renormalon we develop formalism of operator product expansion (OPE) which utilizes the observation that k2Q2k^2\gg Q^2. When applied to the simplest graphs the formalism reproduces the known results in a compact form. In more generality, the formalism reveals the fact that the class of the renormalon-type graphs is not well defined. In particular, graphs with extra vacuum-polarization chains are not suppressed. The reason is that while inclusion of extra chains lowers the power of lnk2\ln k^2 their contribution is enhanced by combinatorial factors.Comment: LaTex, 18 pages, 5 figures. Some numerical coefficients are corrected once mor

    Generalization of the Fierz-Pauli Action

    Full text link
    We consider the Lagrangian of gravity covariantly amended by the mass and polynomial interaction terms with arbitrary coefficients, and reinvestigate the consistency of such a theory in the decoupling limit, up to the fifth order in the nonlinearities. We calculate explicitly the self-interactions of the helicity-0 mode, as well as the nonlinear mixing between the helicity-0 and -2 modes. We show that ghost-like pathologies in these interactions disappear for special choices of the polynomial interactions, and argue that this result remains true to all orders in the decoupling limit. Moreover, we show that the linear, and some of the nonlinear mixing terms between the helicity-0 and -2 modes can be absorbed by a local change of variables, which then naturally generates the cubic, quartic, and quintic Galileon interactions, introduced in a different context. We also point out that the mixing between the helicity-0 and 2 modes can be at most quartic in the decoupling limit. Finally, we discuss the implications of our findings for the consistency of the effective field theory away from the decoupling limit, and for the Boulware-Deser problem.Comment: 18 pages, no figure

    Masses and decay constants of bound states containing fourth family quarks from QCD sum rules

    Get PDF
    The heavy fourth generation of quarks that have sufficiently small mixing with the three known SM families form hadrons. In the present work, we calculate the masses and decay constants of mesons containing either both quarks from the fourth generation or one from fourth family and the other from known third family SM quarks in the framework of the QCD sum rules. In the calculations, we take into account two gluon condensate diagrams as nonperturbative contributions. The obtained results reduce to the known masses and decay constants of the bˉb\bar b b and cˉc\bar c c quarkonia when the fourth family quark is replaced by the bottom or charm quark.Comment: 15 Pages, 9 Figures and 6 Table

    Tunneling-assisted impact ionization fronts in semiconductors

    Get PDF
    We propose a novel type of ionization front in layered semiconductor structures. The propagation is due to the interplay of band-to-band tunneling and impact ionization. Our numerical simulations show that the front can be triggered when an extremely sharp voltage ramp (10kV/ns\sim 10 {\rm kV/ns}) is applied in reverse direction to a Si p+nn+p^+-n-n^+-structure that is connected in series with an external load. The triggering occurs after a delay of 0.7 to 0.8 ns. The maximal electrical field at the front edge exceeds 106V/cm10^6 {\rm V/cm}. The front velocity vfv_f is 40 times faster than the saturated drift velocity vsv_s. The front passes through the nn-base with a thickness of 100μm100 {\mu m} within approximately 30 ps, filling it with dense electron-hole plasma. This passage is accompanied by a voltage drop from 8 kV to dozens of volts. In this way a voltage pulse with a ramp up to 500kV/ns500 {\rm kV/ns} can be applied to the load. The possibility to form a kilovolt pulse with such a voltage rise rate sets new frontiers in pulse power electronics.Comment: 12 pages, 6 figure

    Scalar Quarkonia at Finite Temperature

    Get PDF
    Masses and decay constants of the scalar quarkonia, χQ0(Q=b,c)\chi_{Q0} (Q=b,c) with quantum numbers IG(JPC)=0+(0++)I^G(J^{PC})=0^{+}(0^{++}) are calculated in the framework of the QCD sum rules approach both in vacuum and finite temperature. The masses and decay constants remain unchanged up to T100 MeVT\simeq100~MeV but they start to diminish with increasing the temperature after this point. At near the critic or deconfinement temperature, the decay constants reach approximately to 25% of their values in vacuum, while the masses are decreased about 6% and 23% for bottom and charm cases, respectively. The results at zero temperature are in a good consistency with the existing experimental values and predictions of the other nonperturbative approaches. Our predictions on the decay constants in vacuum as well as the behavior of the masses and decay constants with respect to the temperature can be checked in the future experiments.Comment: 12 Pages, 9 Figures and 2 Table

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    Hadronic Light-by-Light Scattering in the Muonium Hyperfine Splitting

    Full text link
    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval Δν(Mu)HLBL\Delta \nu({\rm Mu}) _{\rm\tiny HLBL} is calculated with the light-by-light scattering approximated by exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, Δν(Mu)HLBL=0.0065(10)Hz\Delta \nu({\rm Mu})_{\rm\tiny HLBL}= -0.0065(10) {Hz}. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.Comment: 16 pages, 7 figures, a reference adde

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Compressible hydromagnetic nonlinearities in the predecoupling plasma

    Full text link
    The adiabatic inhomogeneities of the scalar curvature lead to a compressible flow affecting the dynamics of the hydromagnetic nonlinearities. The influence of the plasma on the evolution of a putative magnetic field is explored with the aim of obtaining an effective description valid for sufficiently large scales. The bulk velocity of the plasma, computed in the framework of the LambdaCDM scenario, feeds back into the evolution of the magnetic power spectra leading to a (nonlocal) master equation valid in Fourier space and similar to the ones discussed in the context of wave turbulence. Conversely, in physical space, the magnetic power spectra obey a Schroedinger-like equation whose effective potential depends on the large-scale curvature perturbations. Explicit solutions are presented both in physical space and in Fourier space. It is argued that curvature inhomogeneities, compatible with the WMAP 7yr data, shift to lower wavenumbers the magnetic diffusivity scale.Comment: 29 page

    On the effective action of the vacuum photon splitting in Lorentz-violating QED

    Full text link
    We consider one-loop radiative corrections from Lorentz- and CPT- violating extended QED to address the specific problem of finding explicitly an effective action describing amplitude of photon triple splitting. We show that it is not possible to find a nonzero photon triple splitting effective action, at least by using the derivative expansion method (at zero external momenta), up to leading order in the Lorentz- and CPT- violating parameter.Comment: 4 pages, version to appear in EP
    corecore