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The heavy fourth generation of quarks that have sufficiently small mixing with the

three known SM families form hadrons. In the present work, we calculate the masses

and decay constants of mesons containing either both quarks from the fourth gener-

ation or one from fourth family and the other from known third family SM quarks in

the framework of the QCD sum rules. In the calculations, we take into account two

gluon condensate diagrams as nonperturbative contributions. The obtained results

reduce to the known masses and decay constants of the b̄b and c̄c quarkonia when

the fourth family quark is replaced by the bottom or charm quark.
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I. INTRODUCTION

In the standard model (SM), we have three generation of quarks experimentally observed.
Among these quarks, the top (t) quark does not form bound states (hadrons) as a conse-
quence of the high value of its mass. The top quark immediately decays to the bottom
quark giving a W boson and this transition has full strength. The number of quark and
lepton generations is one of the mysteries of nature and can not be addressed by the SM.
There are flavor democracy arguments that predict the existence of the fourth generation
of quarks [1–3]. It is expected that the masses of the fourth generation quarks are in the
interval (300− 700) GeV [4], in which the upper limit coincides with the one obtained from
partial-wave unitarity at high energies [5]. Within the flavor democracy approach, the Dirac
masses of the fourth family fermions are almost equal, whereas masses of the first three
family fermions as well as the CKM and PMNS mixings are obtained via small violations
of democracy [6, 7]. For the recent status of the SM with fourth generation (SM4), see e.g.
[8–10] and references therein.

Although the masses of fourth generation quarks are larger than the top quark mass (the
last analysis of the Tevatron data implies md4 > 372 GeV [11] and mu4 > 358 GeV [12]),
they can form bound states as a result of the smallness of the mixing between these quarks
and ordinary SM quarks [13–19]. As the mass difference between these two quarks is small,
we will refer to both members of the fourth family by u4. The condition for formation of
new hadrons containing ultra-heavy quarks (Q) is given by [20]:

|VQq| ≤

(

100 GeV

mQ

)3/2

. (1)

For t-quark with mt = 172 GeV , Eq. (1) leads to Vtq < 0.44, whereas the single top
production at the Tevatron gives Vtb > 0.74 [21]. When the fourth family quarks have
sufficiently small mixing with the ordinary quarks, the hadrons made up from these quarks
can live longer enough, and the bound state ū4u4 decays through its annihilation and not
via u4 decays to a lower family quark plus a W boson [19]. Concerning the flavor democracy
approach, this situation is realized for parameterizations proposed in [7] and [22], whereas
parameterization in [6] predicts Vu4q ∼ 0.2 which does not allow formation of the fourth
family quarkonia for mu4 > 300GeV .

Considering the above discussions, the production of such bound states if they exist will
be possible at LHC. The conditions for observation of the fourth SM family quarks at the
LHC has been discussed in [13, 23–30]. As there is a possibility to observe the bound
states which consist of fourth family quarks at the LHC, it is reasonable to investigate their
properties, theoretically and phenomenologically.

In the present work, we calculate the masses and decay constants of the bound state
mesons containing two heavy quarks either both from the SM4 or one from heavy fourth
family and the other from ordinary heavy b or c quark. Here, we consider the ground state
mesons with different quantum numbers, namely scalars (ū4u4, ū4b and ū4c), pseudoscalars
(ū4γ5u4, ū4γ5b and ū4γ5c), vectors (ū4γµu4, ū4γµb and ū4γµc) and axial vector (ū4γµγ5u4,
ū4γµγ5b and ū4γµγ5c) mesons. These mesons, similar to the ordinary hadrons, are formed
in low energies very far from the asymptotic region. Therefore, to calculate their hadronic
parameters such as their masses and leptonic decay constants, we need to consult some
nonperturbative approaches. Among the nonperturbative methods, the QCD sum rules
[31], which is based on QCD Lagrangian and is free of model dependent parameters, is one
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of the most applicable and predictive approaches to hadron physics. This method has been
successfully used to calculate the masses and decay constants of mesons both in vacuum
and at finite temperature (see for instance [32–41]). Now, we extend the application of this
method to calculate the masses and decay constants of the considered mesons containing
fourth family quarkonia. The heavy quark condensates are suppressed by the inverse powers
of the heavy quark mass. Therefore, as the first nonperturbative contributions, we take into
account the two-gluon condensate diagrams.

The outline of the paper is as follows. In the next section, QCD sum rules for masses
and decay constants of the considered bound states are obtained. Section III encompasses
our numerical analysis on the masses and decay constants of the ground state ultra heavy
scalar, pseudoscalar, vector and axial vector mesons as well as our discussions.

II. QCD SUM RULES FOR MASSES AND DECAY CONSTANTS OF THE

BOUND STATES (MESONS) CONTAINING HEAVY FOURTH FAMILY

QUARKS

We start to this section considering sufficient correlation functions responsible for cal-
culation of the masses and decay constants of the bound states containing heavy fourth
generation quarks in the framework of QCD sum rules. The two point correlation function
corresponding to the scalar (S) and pseudoscalar (PS) cases is written as:

ΠS(PS) = i

∫

d4xeip.x〈0 | T
(

JS(PS)(x)J̄S(PS)(0)
)

| 0〉, (2)

where T is the time ordering product and JS(x) = u4(x)q(x) and JPS(x) = u4(x)γ5q(x) are
the interpolating currents of the heavy scalar and pseudoscalar bound states, respectively.
Here, the q can be either fourth family u4 quark or ordinary heavy b or c quark. Similarly,
the correlation function for the vector (V) and axial vector (AV) is written as:

ΠV (AV )
µν = i

∫

d4xeip.x〈0 | T
(

JV (AV )
µ (x)J̄V (AV )

ν (0)
)

| 0〉, (3)

where, the currents JV
µ = u4(x)γµq(x) and JAV

µ = u4(x)γµγ5q(x) are responsible for creating
the vector and axial vector quarkonia from vacuum with the same quantum numbers as the
interpolating currents.

From the general philosophy of the QCD sum rules, we calculate the aforesaid correlation
functions in two alternative ways. From the physical or phenomenological side, we calculate
them in terms of hadronic parameters such as masses and decay constants. In QCD or
theoretical side, they are calculated in terms of QCD degrees of freedom such as quark
masses and gluon condensates by the help of operator product expansion (OPE) in deep
Euclidean region. Equating these two representations of the correlation functions through
dispersion relations, we acquire the QCD sum rules for the masses and decay constants.
These sum rules relate the hadronic parameters to the fundamental QCD parameters. To
suppress contribution of the higher states and continuum, Borel transformation with respect
to the momentum squared is applied to both sides of the correlation functions.

First, to calculate the phenomenological part, we insert a complete set of intermediate
states having the same quantum numbers as the interpolating currents to the correlation
functions. Performing the integral over x and isolating the ground state, we obtain

ΠS(PS) =
〈0 | JS(PS)(0) | S(PS)〉〈S(PS) | JS(PS)(0) | 0〉

m2
S(PS) − p2

+ · · · , (4)
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where · · · represents contributions of the higher states and continuum and mS(PS) is mass of
the heavy scalar(pseudoscalar) meson. From a similar manner, for the vector (axial vector)
case, we obtain

ΠV (AV )
µν =

〈0 | JV (AV )
µ (0) | V (AV )〉〈V (AV ) | JV (AV )

ν (0) | 0〉

m2
V (AV ) − p2

+ · · · , (5)

To proceed, we need to know the matrix elements of the interpolating currents between the
vacuum and mesonic states. These matrix elements are parametrized in terms of leptonic
decay constants as:

〈0 | J(0) | S〉 = fSmS ,

〈0 | J(0) | PS〉 = fPS
m2

PS

mu4 +mq
,

〈0 | J(0) | V (AV )〉 = fV (AV )mV (AV )εµ, (6)

where fi are the leptonic decay constants of the considered bound state mesons. Using
summation over polarization vectors in the V (AV ) case as

ǫµǫ
∗
ν = −gµν +

pµpν

m2
V (AV )

,

(7)

we get, the final expressions of the physical sides of the correlation functions as:

ΠS =
f 2
Sm

2
S

m2
S − p2

+ · · ·

ΠPS =
f 2
PS(

m2
PS

mu4+mq
)2

m2
PS − p2

+ · · ·

ΠV (AV )
µν =

f 2
V (AV )m

2
V (AV )

m2
V (AV ) − p2



−gµν +
pµpν

m2
V (AV )



+ · · · ,

(8)

where to calculate the mass and decay constant in the V (AV ) channel, we choose the
structure gµν .

In QCD side, the correlation functions are calculated in deep Euclidean region, p2 ≪
−Λ2

QCD via OPE, where short or perturbative and long distance or non-perturbative effects
are separated. For each correlation function in S(PS) case and coefficient of the selected
structure in V (AV ) channel, we write

ΠQCD = Πpert +Πnonpert. (9)

The short distance contribution (bare loop diagram in figure (1) part (a)) in each case is
calculated using the perturbation theory, whereas the long distance contributions (diagrams
shown in figure (1) part (b) ) are parameterized in terms of gluon condensates. To proceed,
we write the perturbative part in terms of a dispersion integral,

ΠQCD =
∫

dsρ(s)

s− p2
+Πnonpert, (10)
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(a)

(b)

FIG. 1. (a): Bare loop diagram (b): Diagrams corresponding to gluon condensates.

where, ρ(s) is called the spectral density. To calculate the spectral density, we calculate
the Feynman amplitude of the bare loop diagram by the help of Cutkosky rules, where the
quark propagators are replaced by Dirac delta function, i.e., 1

p2−m2 → (−2πi)δ(p2−m2). As

a result, the spectral density is obtained as follows:

ρ(s) =
3s

8π2
(1−

(m1 ±m2)
2

s
)

√

1− 2
m2

1 +m2
2

s
+

(m2
1 −m2

2)
2

s2
(11)

where + sign in (m1 ± m2) is chosen for scalar and axial vector cases and − sign is for
psoduscalar and vector channels. Here, m1 = mu4 and m2 is either mu4 or mc(b).

To obtain the non-perturbative part, we calculate the gluon condensate diagrams repre-
sented in part (b) of figure (1). For this aim, we use Fock-Schwinger gauge, xµAa

µ(x) = 0.
In momentum space, the vacuum gluon field is expressed as:

Aa
µ(k

′) = −
i

2
(2π)4Ga

ρµ(0)
∂

∂k′
ρ

δ(4)(k′), (12)

where k′ is the gluon momentum. In the calculations, we also use the quark-gluon-quark
vertex as:

Γa
ijµ = igγµ

(

λa

2

)

ij

, (13)

After straightforward but lengthy calculations, the non-perturbative part for each channel
in momentum space is obtained as:

Πi
nonpert =

∫ 1

0
〈αsG

2〉
Θi +Θi(m1 ↔ m2)

96π(m2
2 +m2

1x−m2
2x− p2x+ p2x2)4

dx (14)

where Θi(m1 ↔ m2) means that in Θi, we exchange m1 and m2. The explicit expressions
for Θi are given as:

ΘS=
1

2
x2

{

3m4
1x(m

2
2(x(17− 2x(2x(9x− 26) + 47)) + 8)

+p2x(x(27x− 25)− 7)(x− 1)2) + 2m2m
3
1(m

2
2(x(x(x(21x− 58) + 39)
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+12)− 15)− p2(x− 1)x(x(x(7x− 13)− 3) + 12))

+m2
1(−m2

2p
2(x− 1)x(x(x(2x(81x− 242) + 455)− 96)− 33)

+m4
2(x(x(x(3x(36x − 145) + 652)− 414) + 72) + 15) + 3p4(x− 1)3

x2(24x2 − 22x− 5))−m2m1(x− 1)(−m2
2p

2(x2 − 2)(x(14x− 27) + 15)

+m4
2(3x− 5)(x(7x− 12) + 6) + p4(x− 1)x(x(2x(7x− 13) + 3) + 12))

+(x− 1)(−m2
2p

4(x− 1)x(2x(x(2x(18x− 55) + 109)− 30)− 9)

+m4
2p

2(x(x(x(x(81x− 328) + 490)− 299) + 42) + 15)

−m6
2(2x− 3)(x(6x(3x− 8) + 47)− 15) + 3p6(x− 1)3x2(6(x− 1)x− 1))

+9m6
1(x− 1)2x2(4x+ 1) + 3m2m

5
1x(x((8− 7x)x+ 2)− 4)

}

,

ΘPS= −
1

2
x2

{

− 3m4
1x(m

2
2(36x

4 − 104x3 + 94x2 − 17x− 8)

−p2(x− 1)2x(27x2 − 25x− 7))− 2m2m
3
1(m

2
2(21x

4 − 58x3 + 39x2 + 12x− 15)

+p2x(−7x4 + 20x3 − 10x2 − 15x+ 12)) +m2m1(x− 1)(m2
2p

2(−14x4

+27x3 + 13x2 − 54x+ 30) +m4
2(21x

3 − 71x2 + 78x− 30)

+p4x(14x4 − 40x3 + 29x2 + 9x− 12)) +m2
1(−m2

2p
2x(162x5 − 646x4 + 939x3

−551x2 + 63x+ 33) +m4
2(108x

5 − 435x4 + 652x3 − 414x2 + 72x+ 15)

+3p4(x− 1)3x2(24x2 − 22x− 5)) + (x− 1)(−m2
2p

4x(72x5 − 292x4 + 438x3

−278x2 + 51x+ 9) +m4
2p

2(81x5 − 328x4 + 490x3 − 299x2 + 42x+ 15)

+m6
2(−36x4 + 150x3 − 238x2 + 171x− 45) + 3p6(x− 1)3x2(6x2 − 6x− 1))

+9m6
1(x− 1)2x2(4x+ 1) + 3m2m

5
1x(7x

3 − 8x2 − 2x+ 4)

}

,

ΘV= −
1

2
(x− 1)2

{

m4
1x

2(m2
2(2x(1− 18(x− 1)x) + 3)

+p2(x(27x− 25)− 7)x2) + 2m2m
3
1(x− 1)2x(m2

2(3x− 4)

−p2(x− 3)x)−m2m1(x− 1)2(m2
2p

2x((7 − 2x)x− 8) +m4
2(x− 1)(3x− 5)

+p4x2(2(x− 1)x+ 3)) +m2
1(x− 1)x(m2

2p
2x(x(−54x2 + 56x+ 5) + 4)

+m4
2(9(x− 1)x(4x− 1)− 8) + p4x3(24x2 − 22x− 5)) + (x− 1)2

(m2
2p

4x2(4(7− 6x)x2 + 1) +m4
2p

2x(x2(27x− 31)− 3)

+m6
2(5− 2x(6x2 − 9x+ 4)) + p6x4(6(x− 1)x− 1))

+3m6
1x

4(4x+ 1)− 3m2m
5
1(x− 1)2x2

}

,

ΘAV= −
1

2
x2

{

2m2m
3
1x

3(m2
2(4− 3x) + p2(x2 + x− 2))

+m4
1x(m

2
2(x(17− 2x(18(x− 3)x+ 47)) + 8) + p2x(x(27x− 25)− 7)(x− 1)2)

+m2
1(−m2

2p
2(x− 1)x(x(x(2x(27x− 82) + 149)− 32)− 11)

+m4
2(3x(x(x(3x(4x − 17) + 76)− 46) + 8) + 5) + p4(x− 1)3x2(24x2 − 22x− 5))

+m2m1(x− 1)x2(m2
2p

2(7− x(2x+ 3)) +m4
2(3x− 5)

+p4(x− 1)(2(x− 1)x+ 3)) + (x− 1)(−m2
2p

4(x− 1)x(2x(x(2x(6x− 19)
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+37)− 10)− 3) +m4
2p

2(x(x(x(x(27x − 112) + 162)− 97) + 14) + 5)

+m6
2(x(57− 2x(3x(2x− 9) + 43))− 15) + p6(x− 1)3x2(6(x− 1)x− 1))

+3m2m
5
1x

4 + 3m6
1(x− 1)2x2(4x+ 1)

}

. (15)

The next step is to match the phenomenological and QCD sides of the correlation func-
tions to get sum rules for the masses and decay constants of the bound states. To suppress
contribution of the higher states and continuum, Borel transformation over p2 as well as
continuum subtraction are performed. As a result of this procedure, we obtain the following
sum rules:

m2
S(V )(AV )f

2
S(V )(AV )e

−m2
S(V )(AV )

M2 =
∫ s0

(m1+m2)2
ds ρS(V )(AV )(s) e−

s

M2 + B̂Π
S(V )(AV )
nonpert ,

m4
PSf

2
PS

(mu4 +mq)2
e

−m2
PS

M2 =
∫ s0

(m1+m2)2
ds ρPS(s) e−

s

M2 + B̂ΠPS
nonpert, (16)

where M2 is the Borel mass parameter and s0 is the continuum threshold. The sum rules
for the masses are obtained applying derivative with respect to − 1

M2 to the both sides of
the above sum rules and dividing by themselves. i.e.,

m2
S(PS)(V )(AV ) =

− d
d( 1

M2 )

[

∫ s0
(m1+m2)2

ds ρS(PS)(V )(AV )(s) e−
s

M2 + B̂Π
S(PS)(V )(AV )
nonpert

]

∫ s0
(m1+m2)2

ds ρS(PS)(V )(AV )(s) e−
s

M2 + B̂Π
S(PS)(V )(AV )
nonpert

, (17)

where

B̂Πi
nonpert =

∫ 1

0
e

m2
2+x(m2

1−m2
2)

M2x(x−1)
∆i +∆i(m1 ↔ m2)

π96M6(x− 1)4x3
〈αsG

2〉dx, (18)

and

∆S= −m2m
3
1(x− 1)x2(m2

2(14x
2 − 29x+ 14)

+2M2x(7x2 − 13x+ 6)) +m4
1(x− 1)x3(m2

2(9x
2 − 14x+ 6)

+3M2x(3x2 − 4x+ 1)) +m2m1(x− 1)(m2
2M

2x

(14x4 − 53x3 + 71x2 − 36x+ 6) +m4
2(7x

4 − 28x3 + 40x2 − 25x+ 6)

+2M4x2(14x4 − 40x3 + 29x2 + 9x− 12)) +m2
1x(m

2
2M

2x

(−18x5 + 70x4 − 105x3 + 77x2 − 27x+ 3) +m4
2(−9x5 + 37x4

−61x3 + 52x2 − 21x+ 3)− 12M4x2(3x+ 1)(x− 1)4)− (x− 1)

(−2m2
2M

4x3(18x4 − 76x3 + 123x2 − 89x+ 24)

+m4
2M

2x(−9x5 + 40x4 − 71x3 + 68x2 − 33x+ 6) +m6
2(−3x5 + 14x4

−27x3 + 29x2 − 15x+ 3) + 6M6(x− 1)3x3(6x2 − 6x− 1))

−3m6
1(x− 1)x5 +m2m

5
1x

3(7x2 − 8x+ 1),

∆PS= −m2m
3
1(x− 1)x2(m2

2(14x
2 − 29x+ 14)

+2M2x(7x2 − 13x+ 6))−m4
1(x− 1)x3(m2

2(9x
2 − 14x+ 6)

+3M2x(3x2 − 4x+ 1)) +m2m1(x− 1)(m2
2M

2x(14x4 − 53x3 + 71x2 − 36x+ 6)

+m4
2(7x

4 − 28x3 + 40x2 − 25x+ 6) + 2M4x2(14x4 − 40x3 + 29x2 + 9x− 12))
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+m2
1x(m

2
2M

2x(18x5 − 70x4 + 105x3 − 77x2 + 27x− 3) +m4
2(9x

5 − 37x4

+61x3 − 52x2 + 21x− 3) + 12M4x2(3x+ 1)(x− 1)4)

+(x− 1)(−2m2
2M

4x3(18x4 − 76x3 + 123x2 − 89x+ 24)

+m4
2M

2x(−9x5 + 40x4 − 71x3 + 68x2 − 33x+ 6)

+m6
2(−3x5 + 14x4 − 27x3 + 29x2 − 15x+ 3)

+6M6(x− 1)3x3(6x2 − 6x− 1)) + 3m6
1(x− 1)x5 +m2m

5
1x

3(7x2 − 8x+ 1),

∆V= m2m
3
1(x− 1)2x2(m2

2(2x− 1) + 2M2x(x+ 2))

−m4
1(x− 1)x3(m2

2(3x
2 − 3x+ 1) +M2(3x− 1)x2)−m2m1(x− 1)3x

(m2
2M

2(2x2 + 3x− 2) +m4
2(x− 1) + 2M4x(2x2 − 2x+ 3))

+m2
1(x− 1)2x(m2

2M
2x(6x3 − 8x2 + x+ 2) +m4

2(3x
3 − 6x2 + 4x− 1)

+4M4x3(3x2 − 2x− 1)) + (x− 1)3(2m2
2M

4x2(−6x3 + 10x2 − 3x+ 1)

−m4
2M

2x(3x3 − 7x2 + 3x+ 1)−m6
2(x− 1)3 + 2M6x4(6x2 − 6x− 1))

+m6
1x

6 −m2m
5
1(x− 1)x4,

∆AV= −m2m
3
1(x− 1)x2(m2

2(2x
2 − 5x+ 2) (19)

+2M2x(x2 − 4x+ 3))−m4
1(x− 1)x3(m2

2(3x
2 − 6x+ 2)

+M2x(3x2 − 4x+ 1)) +m2m1(x− 1)x(m2
2M

2x(2x3 − 11x2 + 17x− 6)

+m4
2(x

3 − 4x2 + 4x− 1) + 2M4x2(2x3 − 4x2 + 5x− 3)) +m2
1x(m

2
2M

2x(6x5

−26x4 + 43x3 − 31x2 + 9x− 1) +m4
2(3x

5 − 15x4 + 27x3 − 20x2 + 7x− 1)

+4M4x2(3x+ 1)(x− 1)4) + (x− 1)(−2m2
2M

4x3(6x4 − 28x3 + 45x2 − 31x+ 8)

+m4
2M

2x(−3x5 + 16x4 − 33x3 + 28x2 − 11x+ 2)−m6
2(x

5 − 6x4 + 13x3 − 11x2

+5x− 1) + 2M6(x− 1)3x3(6x2 − 6x− 1)) +m6
1(x− 1)x5 +m2m

5
1(x− 1)2x3.

III. NUMERICAL RESULTS

To obtain numerical values for the masses and decay constants of the considered bound
states containing heavy fourth family from the obtained QCD sum rules, we take the mass
of the u4 in the interval mu4 = (450 − 550) GeV , mb = 4.8 GeV , mc = 1.3 GeV and
〈0 | 1

π
αsG

2 | 0〉 = 0.012 GeV 4. The sum rules for the masses and decay constants contain
also two auxiliary parameters, namely Borel mass parameterM2 and continuum threshold s0.
The standard criteria in QCD sum rules is that the physical quantities should be independent
of the auxiliary parameters. Therefor, we should look for working regions of these parameters
such that our results are approximately insensitive to their variations. The working region
for the Borel mass parameter is determined demanding that not only the higher states and
continuum contributions are suppressed but contributions of the highest order operators
should also be small, i.e., the sum rules for the masses and decay constants should converge.
As a result of the above procedure, the working region for the Borel parameter is found to
be 500 GeV 2 ≤ M2 ≤ 900 GeV 2 for ū4b and ū4c, and 1200 GeV 2 ≤ M2 ≤ 2000 GeV 2

for ū4u4 heavy SM4 mesons. The continuum threshold s0 is not completely arbitrary but
correlated to the energy of the first exited state with the same quantum number as the
interpolating current. We have no information about the energy of the first excitation of
the bound states containing fourth family quarks. Hence, the only way to determine the
working region is to choose a region such that not only the results depend weakly on this
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parameter but the dependence of the physical observables on the Borel parameter M2 is
also minimal. Our numerical calculations lead to the interval (m1+m2+3.3)2 GeV 2 ≤ s0 ≤
(m1 +m2 + 3.7)2 GeV 2 for the continuum threshold.
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M2AGeV2E

m
S
HG

eV
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4

FIG. 2. Dependence of mass of the scalar ū4u4 on the Borel parameter, M2 at three fixed values

of the continuum threshold. The upper, middle and lower lines belong to the values s0 = (m1 +

m2 + 3.7)2 GeV 2, s0 = (m1 +m2 + 3.5)2 GeV 2 and s0 = (m1 +m2 + 3.3)2 GeV 2, respectively.
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FIG. 3. The same as Fig. 2 but for pseudoscaler ū4γ5u4.

As an example, let us consider the case of the bound state ū4u4. The dependence of
the masses of scalar ū4u4, pseudoscalar ū4γ5u4, vector ū4γµu4 and axial vector ū4γ5γµu4 are
presented in figures (2-5) at three different fixed values from the considered working region
for the continuum threshold. From these figures, we see a good stability of the masses
with respect to the Borel mass parameter M2. From these figures, it is also clear that the
results do not depend on the continuum threshold in its working region. The dependence of
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FIG. 4. The same as Fig. 2 but for vector ū4γµu4.
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FIG. 5. The same as Fig. 2 but for axial vector ū4γ5γµu4.

the decay constants of the scalar ū4u4, pseudoscalar ū4γ5u4, vector ū4γµu4 and axial vector
ū4γ5γµu4 are presented in figures (6-9) also at three different fixed values of the continuum
threshold. These figures also depict approximately insensitivity of the results under variation
of the Borel mass parameter in its working region. The results of decay constants also show
very weak dependency on the continuum threshold in its working region. From a similar
way, we analyze the mass and decay constants of the cases when one of the quarks belong
to the heavy fourth generation and the other is ordinary bottom or charm quark. The
numerical results deduced from the figures are collected in Tables I-VI for three different
values of the mu4, namely mu4 = 450 GeV , mu4 = 500 GeV and mu4 = 550 GeV . The errors
presented in these tables are only due to the uncertainties coming from determination of
the working regions for the auxiliary parameters. Here, we should stress that the obtained
results in Tables I-VI are within QCD and do not include contributions coming from the
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FIG. 6. Dependence of the decay constant of the scalar ū4u4 on the Borel parameter, M2 at three

fixed values of the continuum threshold. The upper, middle and lower lines belong to the values

s0 = (m1 + m2 + 3.7)2 GeV 2, s0 = (m1 + m2 + 3.5)2 GeV 2 and s0 = (m1 + m2 + 3.3)2 GeV 2,

respectively.
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FIG. 7. The same as Fig. 6 but for the decay constant of pseudoscalar ū4γ5u4.

Higgs couplings to the ultra heavy quarks. Such contributions to the binding energy have
been calculated in [19], where it is shown that these contributions are more than several
GeV in the case when both quarks belong to the fourth family. The Higgs contribution
calculated in [19] is proportional to the product of two quark masses. When we replace one
of the ultra heavy quarks by b or c quark, the binding energy obtained in [19] reduces to a
value which is less than the QCD sum rules predictions in the present work. However, when
both quarks belong to the fourth family, the binding energy obtained in the present work is
very small comparing to the Higgs corrections in [19].

At the end of this part, we would like to mention that the obtained QCD sum rules in the
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FIG. 8. The same as Fig. 6 but for the decay constant of vector ū4γµu4.

4
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FIG. 9. The same as Fig. 6 but for the decay constant of axial vector ū4γ5γµu4.

present work reproduce the masses and decay constants of the ordinary b̄b(c̄c) states when
we set u4 → b(c). The obtained numerical values in this limit are in a good consistency with
the existing experimental data [42] and QCD sum rules predictions [40, 41].

To sum up, against the top quark, the heavy fourth generation of quarks that have
sufficiently small mixing with the three known SM families form hadrons. Considering the
arguments mentioned in the text, the production of such bound states will be possible at
LHC. Hoping for this possibility, we calculated the masses and decay constants of the bound
state objects containing two quarks either both from the SM4 or one from heavy fourth
generation and the other from observed SM bottom or charm quarks in the framework of
the QCD sum rules. The obtained numerical results approach to the known masses and
decay constants of the b̄b and c̄c heavy quarkonia, when the fourth family quark is replaced
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4

mass (GeV) u4c̄ u4b̄ u4ū4

Scalar 453.01 ± 0.25 456.45 ± 0.25 901.68 ± 0.50

Pseudoscalar 452.62 ± 0.15 455.95 ± 0.15 901.12 ± 0.30

axial vector 453.00 ± 0.25 456.44 ± 0.25 901.70 ± 0.50

vector 452.62 ± 0.15 455.94 ± 0.15 901.13 ± 0.30

TABLE I. The values of masses of different bound states obtained using mu4 = 450 GeV .

mass (GeV) u4c̄ u4b̄ u4ū4

Scalar 502.91 ± 0.28 506.36 ± 0.28 1001.61 ± 0.55

Pseudoscalar 502.52 ± 0.17 505.86 ± 0.17 1001.04 ± 0.33

Axial Vector 502.91 ± 0.28 506.35 ± 0.28 1001.60 ± 0.55

Vector 502.57 ± 0.17 505.85 ± 0.17 1001.04 ± 0.33

TABLE II. The values of masses of different bound states obtained using mu4 = 500 GeV .
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